Оптическое волокно (оптоволокно)

Скалыватель оптических волокон

После снятия лакового слоя с волокна, его требуется протереть безворсовой салфеткой, смоченной в спирте.

Ошибка №7
При чистке следующего волокна рекомендуется использовать другую салфетку, ну или по крайней мере ту ее часть, которая не участвовала в предыдущей очистке, либо не контактировала с вашими пальцами.

Если жила идеально чистая, протирая ее салфеткой, вы должны услышать характерный скрипящий звук.

Ошибка №8
С этого момента дотрагиваться до волокна руками или чем-либо другим ни в коем случае нельзя.

Более того, пока вы ее не поместили в сварочный аппарат, на нее даже пылинки не должно осесть. Это все влияет на качество сварки и уровень потерь.

После этого волокно нужно идеально ровно отрезать.

Ошибка №9
Нельзя это делать каким-либо другим инструментом, кроме специального скалывателя.

Хотя в СССР на ранних порах развития оптики, применялся даже вот такой универсальный набор кабельщика ВОЛС.

Срез должен быть очень четким, иметь строго цилиндрическую форму, без каких-либо углов и сколов.

Скалыватель может быть как встроен в сварочный аппарат, так и идти отдельным инструментом. Второй вариант предпочтительнее.

Просто помещаете проводок в скалыватель и закрываете крышечки до щелчка.

Ошибка №10
Внимание – остатки и отрезанные кусочки оптоволокна должны обязательно собираться в отдельный контейнер.

Нельзя чтобы они упали на пол, на стол или попали еще куда-либо. Толщина этих жилок настолько мала, что попав вам под кожу, этот кусочек может проникнуть в вену и начнет свое путешествие по всему организму. Также его можно случайно вдохнуть в легкие.

Все это в конечном итоге приведет к печальным последствиям.

Многие решают проблему сбора обрезков при помощи обычных кусочков изоленты. Дешево и сердито.

Ошибка №11
После скалывания волокно больше нельзя протирать спиртом или касаться им чего-либо.

Даже находиться с ним в пыльных или антисанитарных условиях запрещено. Создайте для этого подходящее рабочее место (палатка, затащите и спрячьте кабель в машину и т.п).

Измерение волоконно-оптических потерь

При подсчете общего значения потерь в оптоволокне, также необходимого для определения “бюджета сети”, нужно учитывать все вышеперечисленные типы потерь

Кроме того, это важно для наличия запаса мощности в сети (необходимого в связи со старением оптоволокна, случайными сгибаниями и скручиваниями). Большинство проектировщиков сети оставляют такой запас, добавляя к бюджету соединения 3 — 10 дБ

Конечно, это правило нерелевантно при бюджете мощности в ~2 дБ, как в некоторых 10-гигабитных многомодовых соединениях. Итак, расчет потерь в оптоволоконной сети должен быть произведен по следующей формуле:

Бюджет сети = + + +

Для примера приведен расчет потерь стандартного многомодового соединения 850 нм 2 км с 5 местами соединений (2 коннектора на концах и 3 соединения с патч-панелями) и одним местом сращивания в середине. Запас прочности — 5 дБ. Итак, общее значение оптических потерь соединения составит:

[2 km*3.5 dB/km] + + + 5 dB = 12.3 dB.

4.1. Общая функция и классификация затуханий в оптических кабелях

При распространении оптического сигнала внутри волокна происходит его экспоненциальное затухание, вызываемое потерей мощности Р и обусловленное различными линейными и нелинейными механизмами взаимодействия световых волн/частиц со средой волокна. Если Р – мощность, вводимая в волоконный световод длиной L, прошедшая мощность РL определяется выражением

                                                                  (4.1.1)

где      Р  –  мощность, вводимая в волокно;

L   –  длина волокна;

aпз постоянная затухания волокна.

Используя эту формулу, можно получить выражения для оценки общих и удельных километрических потерь соответственно

                              ,  ,                             (4.1.2)

                              ,  [дБ/км].                               (4.1.3)

Удельные или километрические потери, определяемые по формуле (4.1.3) и имеющие размерность [дБ/км], часто называют коэффициентом затухания ОВ.

Следует отметить, что значения затуханий, выраженные в децибелах, имеют отрицательные значения. В волоконной оптике обычной практикой является опускание отрицательного знака и оперирование с затуханием, скажем в 6 дБ. В действительности затухание равно –6 дБ. Эта величина получается из решений уравнений (4.1.2) и (4.1.3). Но в речи и даже в сводных таблицах результатов измерений отрицательный знак опускается, не приводя к существенной неопределенности. Неопределенности могут возникнуть из-за того, что некоторые уравнения адаптированы с учетом отрицательной величины затухания.

Затухания в общем понимании обусловлены собственными потерями в ОВ ac  и дополнительными потерями, так называемым кабельными, aк обусловленными скруткой, а также деформацией и изгибами оптических волокон при наложении покрытий и защитных оболочек в процессе изготовления оптического кабеля:

                                                 a = aс + aк .(4.1.4)

Собственные потери волоконного световода состоят из потерь поглощения aп и потерь рассеяния aр:

                                                 a = aп + aр.(4.1.5)

Источники потерь, отнесенные к этой категории, являются постоянными для того или иного типа волокна, они определяются совершенством технологии производства волокна, и, как показывает опыт эксплуатации волоконно-оптических кабелей, километрическое затухание в ОВ не изменяется в течении длительных (приблизительно 10 лет) сроков.

Потери, возникающие при распространении сигнала по волоконному световоду, объясняются тем, что часть мощности, поступающей на вход световода, рассеивается вследствие изменения направления распространения лучей на нерегулярностях и их высвечивания в окружающее пространство (aр), другая часть мощности поглощается как самими молекулами кварца (aпм), так и посторонними примесями (aпп), выделяясь в виде джоулева тепла. Примесями могут являться ионы металла (никель, железо, кобальт и др.) и гидроксильные группы (ОН), приводящие к появлению резонансных всплесков затухания. В результате суммарные потери определяются выражением:

                                          a = aпм+ aпп+ aр+ aк .(4.1.6)

Описанная выше классификация затуханий в оптическом кабеле представлена на рисунке 4.1.

Рисунок 4.1 – Классификация затуханий в оптическом кабеле

Динамический диапазон рефлектометра

По определению Международной Электротехнической Комиссии (МЭК, она же IEC – International Electrotechnical Commission) динамический диапазон рефлектометра – разность между уровнем сигнала обратного рэлеевского рассеяния в начале рефлектограммы и пиковым значением шумов в отсутствие сигнала (в конце рефлектограммы), см. рисунок ниже.

Динамический диапазон рефлектометра согласно определению IEC (DIEC) и динамический диапазон Drms, определенный по среднеквадратическому уровню шума (методика большинства производителей рефлектометров)

Динамический диапазон определяет максимальную величину потерь, которые может измерить данная модель рефлектометра. Чем больше динамический диапазон, тем «дальнобойнее» рефлектометр при прочих равных условиях. Если измеряемый сегмент имеет не очень большую длину, но сложную конфигурацию (большое количество коннекторных и муфтовых соединений, на которых теряется оптическая мощность), то рефлектометр с широким динамическим диапазоном зафиксирует больше событий потерь, в то время как рефлектометр с ограниченным диапазоном может «не увидеть» дальнюю часть сегмента после точки, в которой совокупные потери в линии превысят возможности прибора.

Укладка кабеля в оптический кросс и сплайс кассету

Но на этом процесс вовсе не заканчивается. Когда вы заправляете оптоволоконный кабель в кросс или муфту, учтите еще несколько моментов.

Концы кабеля с необходимым запасом должны быть уложены в кассету. Именно эта работа, а не сама сварка считаются у монтажников более ответственным этапом и требует определенной сноровки и навыков.

Запас модуля в кроссе должен составлять порядка 90см, а запас волокна в кассете 2,5-3 оборота.

Поэтому изначально все вымеряйте и не экономьте на разделке.

Место крепления модуля хомутиками, кабельщики рекомендуют обматывать изолентой. Это снижает нагрузку на модуль и не повредит его острыми стенками хомута. Но и перебарщивать с изолентой не стоит.

При укладке волокон в кассете и самого кабеля в кроссе, нигде не должно образоваться острых углов. Любой острый угол превышающий допустимый радиус изгиба кабеля – это потери и ухудшение сигнала.

Критичный изгиб кабеля может случиться и при его монтаже. Поэтому когда монтажники, заводя оптику в ваш дом или проводя по подъезду, не укладывают ее, а именно “пихают”, ждите беды.

При этом, изгиба в дальнейшем может и не остаться, трасса будет идеально ровной. Однако заломленный кабель при монтаже приводит к трещинам на волокнах.

Со временем затухания будут увеличиваться. Активное оборудование поначалу будет вытягивать полезный сигнал из шумов. Но это до тех пор, пока чувствительность приемника и FEC позволяют.

Кассету после укладки жил закрывают крышкой.

Перед этим обязательно проверьте, не торчат ли где какие проводки. Иначе можете попросту перерубить их этой самой крышкой и весь процесс начнете заново.

Достоинства и недостатки оптических кабелей

К несомненным плюсам оптических кабелей, определившим широкое распространение таких линий связи, относятся:

  • высокая помехозащищенность – на световой сигнал не оказывает воздействие бытовое и промышленное электромагнитное излучение, да и сама линия не излучает (это затрудняет несанкционированный доступ к передаваемой информации и не создает проблем электромагнитной совместимости);
  • полная гальваническая развязка между приёмной и передающей стороной;
  • малый уровень затухания – намного меньше, чем у проводных линий;
  • длительный срок службы;
  • большая пропускная способность.

В современных реалиях имеет значение также то, что кабель не привлекает похитителей металла.

Оптика не лишена и недостатков. В первую очередь это сложность монтажа и подключения, что требует специального оборудования, инструментов и материалов, а также предъявляет повышенные требования к квалификации персонала, осуществляющего монтаж и обслуживание линий. Большинство неисправностей в ВОЛС связано с ошибками в монтаже, которые могут проявлять себя не сразу. Изначально стоимость собственно линии также была высокой, но развитие технологий позволило снивелировать этот недостаток до конкурентоспособных уровней.

Оптические линии связи заняли серьезный сектор на рынке коммуникационных материалов. В обозримом будущем серьезной альтернативы им не видно, если не случится технологического прорыва.

Что такое аттенюатор, принцип его работы и где применяется

Что такое коаксиальный кабель, основные характеристики и где используется

Маркировка проводов и кабелей и расшифровка марки

В чём отличие кабеля от провода и что выбрать

Что такое оптрон, как работает, основные характеристики и где применяется

Что такое силовой электрический кабель и из чего он состоит?

Критерии PASS/FAIL

Многие рефлектометры позволяют использовать для измеряемых величин (прежде всего, оптических потерь) критерий PASS/FAIL. Предельно допустимые величины по умолчанию могут браться из телекоммуникационных стандартов, но могут задаваться и пользователем. В примерах выше пределом потерь выступала стандартная величина 0.75 дБ. Если к сегменту применяются специфические требования, можно указать более строгие пределы – например, 0.4 дБ или 0.25 дБ – в зависимости от конфигурации тестируемой линии и допустимого бюджета затухания.

При проведении рефлектометрических измерений нужно помнить, что потери определены по отраженному сигналу. Это оценочный метод, его точность невысока. Для многокилометровых сегментов этот способ единственный, его приходится использовать просто потому, что для прямого измерения потерь оптическими тестерами OLTS (двухмодульный прибор, включающий источник излучения и измеритель оптической мощности) пришлось бы везти второй модуль прибора в удаленную точку. Но для коротких сегментов, установленных в пределах одного здания или группы зданий правильнее и надежнее прибегать к сертификации при помощи комплектов OLTS, измеряющих потери напрямую, а рефлектометрию применять для диагностики при получении результата FAIL.

Комплект защиты сварки

После этого оптоволокно аккуратно достается из сварочника. На место сварки надвигается муфточка КДЗС.

Ошибка №14
КДЗС должна полностью покрывать всю длину зачищенного волокна, иначе никакой жесткости не обеспечить.

Остался последний этап работ. Оптоволокно с муфтой помещается в печку, которая обычно расположена в верхней части сварочного прибора.

Выравниваете жилу в этой печке и закрываете крышку. Нажимаете на табло значок печки и ждете некоторое время до появления сигнала.

Далее открыв крышку, достаете ваше оптоволокно. При этом внутри прозрачной муфты не должно быть пузырьков, которые свидетельствуют о наличии воздуха или отдельных деформированных участков (локальный перегрев).

С каждого конца муфты должно показаться и вытечь наружу немного клеящего состава. Все это говорит о хорошей сварке и надежном соединении и изоляции проводов.

При сварке многожильного кабеля все готовые муфты КДЗС обычно укладываются в специальный охлаждающий лоток. Его смысл не просто удобно расположить жилы, дабы они не путались и не мешались, а в равномерном охлаждении гильз.

Некоторые кабельщики делают такие лотки самостоятельно, например из алюминиевых уголков.

При последовательной сварке нескольких жил, не оставляйте надолго муфту в данном отсеке, иначе ее стенки расплавятся и прилипнут к стенкам направляющих элементов.

Ошибка №15
Еще одна ошибка – так называемый “горячий пирожок”.

Это когда еще не совсем остывшую муфту, сразу же из печки перекладывают в ложемент сплайс кассеты оптического кросса. С одной стороны очень удобно, сплавил – вставил, сплавил – вставил. Ничего не запутается и не переплетется с другими жилами.

Однако в этом случае стенки ложемента не дают толком остыть муфточке, мягкие стенки гильзы изгибает, что в итоге деформирует волокно и приводит к потерям.

Как видите, даже при использовании профессионального сварочного оборудования в этом деле имеется огромное количество своих нюансов и тонкостей.

Принцип работы волоконно-оптического кабеля

Принцип работы волоконно-оптического кабеля базируется на передаче модулированного светового потока, инициируемого лазером или специальным светодиодом в составе оптического трансивера. Электрические сигналы преобразуются в свет на одном конце ВОК, передаются по оптоволокну и принимаются на другом конце кабеля. На приеме свет конвертируется в исходные электрические сигналы.

Разработчики оптического волокна нашли гениальное решение, разделив его на сердцевину и оболочку с разными показателями преломления света. Лазерное излучение проходит по сердцевине, отражаясь от оболочки, что способствует минимальным потерям мощности даже на протяженных магистралях. Физические параметры полученного световода легко рассчитываются, позволяя изготавливать оптоволоконные кабели с заданными характеристиками, предназначенные для решения конкретных задач.

Дальность распространения световых импульсов ограничивается затуханием и дисперсией. Причинами затухания в оптическом кабеле являются внутренние отражения, рассеяние и поглощение. Дисперсия приводит к искажению исходной формы сигналов, а именно к увеличению их длительности.

Современные ВОК имеют параметры, предоставляющие возможность передавать сигналы на расстояние до 100 км. Учитывая эти ограничения, на магистральных трактах через каждые 80 — 100 км устанавливаются регенерационные пункты, в которых полностью восстанавливается исходный сигнал. Таким образом, можно строить линии связи в несколько десятков тысяч километров.

Типы волоконно-оптического кабеля

Волоконно-оптические кабели разделяются на разные типы, что важно понимать при выборе ВОК для индивидуального проекта. Зная типовые особенности оптоволоконного кабеля, можно без труда подобрать наиболее подходящий вариант

4.3. Дополнительные кабельные затухания

Дополнительное затухание, обусловленное кабельными потерями (αк), состоит из суммы по крайней мере семи видов парциальных коэффициентов затухания

,                                      (4.3.1)

где

α’1 –    возникает вследствие приложения к ОВ термомеханических воздействий в процессе изготовления кабеля;

α’2 –    вследствие температурной зависимости коэффициента преломления материала ОВ;

α’3 –    вызывается микроизгибами ОВ;

α’4 –    возникает вследствие нарушения прямолинейности ОВ (скрутка);

α’5 –    возникает вследствие кручения ОВ относительно его оси (осевые напряжения скручивания);

α’6 –    возникает вследствие неравномерности покрытия ОВ;

α’7 –    возникает вследствие потерь в защитной оболочке ОВ.

Таким образом, дополнительные потери определяются в основном процессами рассеяния энергии на неоднородностях, возникающих вследствие перечисленных влияний, и частично увеличением потерь на поглощение энергии. Причинами увеличения потерь на поглощение являются остаточные осевые и поперечные напряжения в ОВ, могущие возникнуть при изготовлении кабеля.

В ряде случаев микроизгибы могут существенно влиять на прирост αк. Значение потерь на одном микроизгибе может изменяться в пределах (0,01÷0,1) дБ. Приращение затухания от микроизгибов α’3 зависит от мелких локальных нарушений прямолинейности ОВ, характеризуемых смещением оси ОВ в поперечных направлениях на участке микроизгиба. Основными причинами появления микроизгибов являются локальные неосесимметричные механические усилия различного происхождения, приложенные  к очень малым участкам ОВ. К микроизгибам следует отнести такие поперечные деформации ОВ, для которых максимальное смещение оси ОВ соизмеримо с диаметром сердцевины волокна. Особенностями микроизгибов является то, что они, как правило, многочисленны, расстояние между соседними микроизгибами существенно больше их размера. Общий вклад потерь, создаваемых микроизгибами, может быть значителен. Вследствие микроизгиба происходит ограничение апертурного угла излучения, распространяющегося по ОВ, и часть энергии излучается из ОВ. Зависимость приращения затухания от микроизгиба α’3 можно определить из выражения :

                                    ,                              (4.3.2)

где

k3 = 0,9 ÷ 1,0;

Nи –    число неоднородностей в виде выпуклостей со средней высотой уи на единицу длины;

а –      радиус сердцевины;

b –      диаметр оптической оболочки;

Δ –      относительное значение показателя преломления;

n1 и n2 –       показатели преломления сердцевины и оболочки;

E и Ec –      модули Юнга оболочки и сердцевины ОВ.

Проверка затухания оптическим рефлектометром

Ну и на финальном этапе остается проверить уровень сигнала непосредственно на самом коннекторе. Оптический рефлектометр не только покажет значение в виде цифры, но и проинформирует на каком расстоянии и в какой точке кабеля происходит падение.

Это не обязательно окажется место пайки, вполне возможно, что сигнал будет теряться на каком-нибудь из поворотов трассы.

Подобными сварочными аппаратами легко и удобно варить кабель GPON для подключения одного или нескольких абонентов. А вот если дело коснется 64-х или 96-ти жильной оптики, то конечно данный процесс с поэтапной заправкой каждой жилки будет сплошным мучением.

При этом нужно иметь очень зоркий глаз, дабы не перепутать цветные оттенки многочисленных жилок.

Для опытного кабельщика на фуджике с отдельным скалывателем, технологический процесс сварки 24-х волокон занимает чуть более 40 минут (1,5минуты на жилу). А сборка кросса, со всеми сопутствующими операциями (разделка, укладка, маркировка) – до полутора часов.

Какой вывод можно сделать из всего вышеизложенного? Конечно, сварить оптику на исправном и настроенном оборудовании, стоимостью в несколько сотен тысяч может каждый, у кого руки растут из нужного места.

А вот настроить этот самый сварочник, скалыватель, плюс поддерживать все это в исправном и работоспособном состоянии годами – для этого уже надо быть профессионалом своего дела и любить данную работу.

https://youtube.com/watch?v=mnYtVLqOGYs%3F

Ультразвук

Одна область исследований в которой затухание играет важную роль, находится в физике ультразвука. Затухание в ультразвуке — это уменьшение амплитуды ультразвукового луча в зависимости от расстояния через среду формирования изображения. Учет эффектов затухания в ультразвуке важен, поскольку уменьшенная амплитуда сигнала может повлиять на качество создаваемого изображения. Зная ослабление, которое ультразвуковой луч испытывает при прохождении через среду, можно настроить амплитуду входного сигнала, чтобы компенсировать любые потери энергии на желаемой глубине визуализации.

  • Измерение ослабления ультразвука в гетерогенных системах, например эмульсии или коллоиды, дает информацию о распределении частиц по размерам. На этот метод существует стандарт ISO.
  • Затухание ультразвука может использоваться для измерения реологии растяжения. Существуют акустические реометры, которые используют закон Стокса для измерения объемной вязкости и объемной вязкости.

. Уравнения волн, которые учитывают акустическое затухание, могут быть записано в форме дробной производной, см. статью о акустическом затухании или, например,

Коэффициент ослабления

Коэффициенты ослабления используются для количественной оценки различных сред в зависимости от того, насколько сильно уменьшается амплитуда передаваемого ультразвука в зависимости от частоты. Коэффициент затухания (α {\ displaystyle \ alpha}) можно использовать для определения общего затухания в дБ в среде по следующей формуле:

Затухание = α ⋅ ℓ ⋅ f {\ displaystyle {\ text {Attenuation}} = \ alpha \ left \ cdot \ ell \ cdot {\ text {f}} }

Затухание линейно зависит от длины среды и коэффициента затухания, а также — приблизительно — от частоты падающего ультразвукового луча для биологической ткани (в то время как для более простых сред, таких как воздух, отношение квадратичное ). Коэффициенты затухания сильно различаются для разных сред. Однако в биомедицинской ультразвуковой визуализации биологические материалы и вода являются наиболее часто используемыми средами. Коэффициенты ослабления обычных биологических материалов на частоте 1 МГц перечислены ниже:

Материал α (дБ МГц ⋅ см) {\ displaystyle \ alpha {\ text {}} \ left ({\ frac {\ text {дБ}} {{\ text {MHz}} \ cdot {\ text {cm}}}} \ right)}
Воздух, при 20 ° C 1,64
Кровь 0,2
Кость, кортикальная 6,9
Кость, трабекулярная 9,94
Мозг 0,6
Грудь 0,75
Сердечный 0,52
Соединительная ткань 1,57
Дентин 80
Эмаль 120
Жир 0,48
Печень 0,5
Костный мозг 0,5
Мышца 1,09
Сухожилие 4,7
Мягкие ткани (в среднем) 0,54
Вода 0,0022

Есть два основных способы потерь акустической энергии: поглощение и рассеяние, например рассеяние света. Распространение ультразвука через однородную среду связано только с поглощением и может быть охарактеризовано только с помощью коэффициента поглощения. При распространении через гетерогенные среды необходимо учитывать рассеяние. Уравнения дробной производной волны могут применяться для моделирования распространения акустических волн с потерями, см. Также акустическое затухание и ссылку

Устройство оптического волокна

На этом принципе построено оптическое волокно. Оно состоит из двух коаксиальных слоев с разной оптической плотностью.

Если в открытый торец волокна попадает световой луч под углом, большим угла светового отражения, он будет отражаться от границы контакта двух сред с разным коэффициентом преломления полностью, с малым затуханием при каждом «скачке».

Внешняя часть оптоволокна изготавливается из пластика. Внутренняя может также быть выполнена из прозрачного пластика, тогда его можно гнуть под достаточно большими углами (даже сворачивать в кольцо, и свет, попавший внутрь, все равно пройдет от одного торца до другого с затуханием, зависящим от оптических свойств пластика и длины световода). Для магистральных кабелей, где гибкость не так важна, внутреннюю жилу обычно делают из стекла. Так уменьшается затухание, уменьшается стоимость световода, но он становится чувствительным к изгибам.

Для увеличения пропускной способности оптической линии волокно выпускают в двухмодовом или многомодовом исполнении. Для этого сечение сердечника увеличивают до 50 мкм или 62,5 мкм (против 10 мкм у одномодового). Через такой световод одновременно может передаваться два или более сигналов.

Такое построение оптической линии передачи имеет определенные недостатки. Один из них – световая дисперсия, вызванная разным маршрутом прохождения каждого сигнала. С ней научились бороться, выполняя сердечник с градиентным (меняющимся от середины к краям) коэффициентом преломления. За счет этого маршруты разных лучей корректируются.

Кабели с многомодовыми волокнами применяются большей частью для локальных сетей (в пределах одного здания, одного предприятия и т.п.), а с одномодовыми – для магистральных линий.

2.1.3 Поглощение в материале волокна

Это поглощение в волокне, обусловленное свойствами материала и рабочей длиной волны, имеет место при возбуждении в материале:

  • электронных переходов;
  • колебательных резонансов;

В результате этого энергия света переходит в тепловую.
Резонансы в ультрафиолетовой (УФ) области спектра связаны с электронными структурами атомов кристаллической решётки. Резонансы в инфракрасной (ИК) области обусловлены колебаниями самих атомов в решётке.
Хотя эти резонансы и лежат весьма далеко от тех оптических частот, которые используются в ВОСП, однако они вызывают столь сильное поглощение, что «хвосты» их полос поглощения захватывают эту область при очень малом уровне потерь.
Можно показать, что погонные потери энергии на поглощение в материале ОВ до ИК-области составляют:

Потери на поглощение быстро растут в ИК-области ( 1мкмБλ
Коэффициент затухания в ИК-области (1мкм

где Cик=0,3 дБ/км — погонные потери в ИК-области;kик=0,5⋅10-6 мкм – коэффициент потерь в ИК-области.
Потери на поглощение быстро растут в ИК-области. При λ>1,8мкм обычное кварцевое ОВ становится практически непрозрачным, что ограничивает верхнюю длину волны пропускания.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Работатека
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: