Cdma в россии. диапазон частот, операторы cdma/ev-do

Введение в сотовые сети

1.3 Инфраструктура сотовых сетей

интерфейса A-bisA-интерфейсаGb-интерфейса

  • HLR (Home Location Register) — база данных, содержащая персональные данные каждого абонента, включая телефонный номер, тарифный план, список подключенных услуг, а также информацию об используемой абонентом SIM-карте.
  • VLR (Visitor Location Register) — временная база данных абонентов, которые находятся в зоне действия определённого центра мобильной коммутации. Каждая базовая станция в сети приписана к определённому VLR, так что абонент не может присутствовать в нескольких VLR одновременно.
  • AuC (Authentication Center) — центр аутентификации абонентов, выполняющий проверку подлинности каждой SIM-карты, подключающейся к сети.
  • SMSC (SMS Center) — центр обмена короткими текстовыми сообщениями, занимающийся их хранением и маршрутизацией.
  • GMSC (Gateway MSC) — шлюз, предоставляющий доступ к сетям проводных городских телефонов. Именно благодаря данному элементу возможны звонки между абонентами сотовых и городских телефонных сетей.
  • SGSN (Serving GPRS Support Node) — узел обслуживания абонентов GPRS, выступающий точкой соединения между системой базовых станций (BSS) и базовой сетью (Core Network). SGSN можно назвать аналогом коммутатора MSC сети GSM. SGSN выполняет контроль доставки пакетов данных, мониторинг находящихся в режиме online пользователей, преобразование кадров GSM в форматы, используемые протоколами TCP/IP глобальной компьютерной сети Internet, регистрацию или «прикрепление» (attachment) абонентов, вновь «появившихся» в зоне действия сети, шифрование данных, обработку поступающей биллинговой информации, а также обеспечивает взаимодействие с реестром собственных абонентов сети HLR. В отличии от вышеперечисленных элементов, SGSN соединяется напрямую с BSC.

Введение в сотовые сети

1.3 Инфраструктура сотовых сетей

интерфейса A-bisA-интерфейсаGb-интерфейса

  • HLR (Home Location Register) — база данных, содержащая персональные данные каждого абонента, включая телефонный номер, тарифный план, список подключенных услуг, а также информацию об используемой абонентом SIM-карте.
  • VLR (Visitor Location Register) — временная база данных абонентов, которые находятся в зоне действия определённого центра мобильной коммутации. Каждая базовая станция в сети приписана к определённому VLR, так что абонент не может присутствовать в нескольких VLR одновременно.
  • AuC (Authentication Center) — центр аутентификации абонентов, выполняющий проверку подлинности каждой SIM-карты, подключающейся к сети.
  • SMSC (SMS Center) — центр обмена короткими текстовыми сообщениями, занимающийся их хранением и маршрутизацией.
  • GMSC (Gateway MSC) — шлюз, предоставляющий доступ к сетям проводных городских телефонов. Именно благодаря данному элементу возможны звонки между абонентами сотовых и городских телефонных сетей.
  • SGSN (Serving GPRS Support Node) — узел обслуживания абонентов GPRS, выступающий точкой соединения между системой базовых станций (BSS) и базовой сетью (Core Network). SGSN можно назвать аналогом коммутатора MSC сети GSM. SGSN выполняет контроль доставки пакетов данных, мониторинг находящихся в режиме online пользователей, преобразование кадров GSM в форматы, используемые протоколами TCP/IP глобальной компьютерной сети Internet, регистрацию или «прикрепление» (attachment) абонентов, вновь «появившихся» в зоне действия сети, шифрование данных, обработку поступающей биллинговой информации, а также обеспечивает взаимодействие с реестром собственных абонентов сети HLR. В отличии от вышеперечисленных элементов, SGSN соединяется напрямую с BSC.

Выделение требуемого канала и демодуляция

Теперь рассмотри, как сигнал принимается, демодулируется. 

Есть принятый сигнал CDMA (1) с двоичной фазовой модуляцией, сначала подаем его на фазовый демодулятор (2), получаем двоичную последовательность и нужно осциллограмму (2) перемножить с КП Уолша (3), которая циклически повторяется. В данном случаем последовательность в приемнике такая же, как и последовательность, которая была в передатчике, с помощью которой был сформирован сигнал. В этом случае результат перемножения (2) и (3) даст сигнал на выходе коррелятора (4).  

Но процесс демодуляции не закончен. Мы перемножили принятый сигнал (2) и КП Уолша (3), теперь должны все просуммировать. Если каждую точку (4) обозначить S1, S2, S3 … S8 — это результат перемножения. Затем все эти точки нужно просуммировать. И чтобы нормировать поделить все на N. 

Передавали символ 1 и получили на выходе 1, и передавали символ 0 и получили на выходе -1. Есть порог принятия решения, если импуль получился выше порога, считаем что приняли 1, импульс ниже порога, считаем, что приняли 0 (5). 

Другой пример. Формирующая последовательность в передатчике не совпадает с последовательностью на приемнике. 

Сигнал тот же самый приняли (1), подали сигнал на демодулятор (2), получили демодулированные последовательности. Процедуру повторяем, сначала перемножаем (4), потом суммируем (5), в результате получим 0. Если последовательность Уолша в приемнике и передатчике не совпадает, то приемник такой сигнал от передатчика не воспринимает. Когда совпадает, сигнал восстанавливается, когда не совпадает сигнала как будто бы нет. 

Демодуляция сигнала на примере

В результате кодового разделения каналов, один информационный символ превращается в кодовую последовательность, получается что один информационный символ у одного передатчика будет ортогонален с информационным символом другого передатчика. 

РТС включает в себя множество радиотехнических устройств, множество передатчиков и все они работают одновременно. Рассмотрим пример, каждый информационный символ превращается в последовательность Уолша. Если множество передатчиков работают одновременно, то их сигналы в эфире складываются, мы принимаем сумму всех сигналов. 

Например, есть 4 передатчика каждый вместо информационного символа передает кодовую последовательность, если передатчик передает информационный символ “1” эта последовательность, какая была такая и осталась, если передается “0”, то у этой последовательности меняется знак. 

Рассмотрим, когда все передатчики передают символ “1”. Так как все передатчики работают одновременно сигнал просто суммируется. Выделять информацию приемник будет с первого передатчика (а1). А остальные передатчики (a0 a2 a3) не должны создавать помех. 

Получили групповой сигнал 4 0 0 0. Теперь нужно выделить один из каналов, выберем первый (а1). Нужно перемножить с той последовательностью Уолша с которой был сигнал сформирован для первого передатчика. Получим в результате 4 и разделим на длину последовательности на 4, получим 1. Передавался символ “1” приняли тоже “1”.

Рассмотрим случай, когда все передатчики передают символ 1, т.е. значения у a0 a2 и a3 не меняются, а меняется значение на противоположное у передатчика a1. 

Групповой сигнал перемножаем с оригинальной последовательностью а1. Передавался символ 0 получили -1. Из группового сигнала успешно извлекаем информацию по передатчику. Сигнал от других передатчиков не создает помех. 

Структура демодулятора CDMA

Приняли сигнал CDMA из эфира, подали на демодулятор, появилась некоторая демодулированная последовательность и перемножали ее с КП Уолша, а затем результат суммировали. Когда мы что-то перемножаем, потом интегрируем это вычисление корреляции. Мы вычисляли корреляцию между принятым сигналом (групповым) и последовательностью Уолша. 

Рассмотрим более сложную структуру демодулятора. 

Квадратурный демодулятор преобразует ВЧ сигнал в сигнал с нулевой несущей. Первым делом нужно выделить сигнал из шумов с помощью согласованного фильтра (СФ). Дальше взять выборку в нужный момент времени. 

Устройство выборки работает на чиповой скорости. Выделили принятую последовательность и нужно вычислить корреляцию между групповым сигналом и КП Уолша. В корреляторе сначала перемножаем, потом суммируем. Дальше стоит устройство выборки, которое осуществляет работу на символьной скорости. И сигнал поступает на устройство принятия решения. 

Почему DS-CDMA?

Принцип технологии множественного доступа с кодовым разделением каналов (CDMA) заключается в расширении спектра исходного информационного сигнала. При этом обеспечивается высокая степень защиты от активных и пассивных помех, что позволяет работать при низких значениях отношения сигнал-шум со значительно меньшей мощностью передаваемого сигнала.

Наиболее широкое распространение получили CDMA-системы с расширением спектра, которое заключается в распределении информационных сигналов по широкой полосе частот. В DS-CDMA-системе каждой абонентской станции выделяется своя уникальная псевдослучайная кодовая последовательность, отличающая ее от других и одновременно используемая для повышения помехоустойчивости и обеспечения безопасности. В передатчике узкополосный информационный сигнал умножается на эту псевдослучайную N-символьную последовательность. В эфире такой сигнал занимает полосу частот, значительно превышающую по ширине полосу частот исходного узкополосного сигнала. При этом использование шумоподобных сигналов с высокой тактовой частотой приводит к тому, что исходный узкополосный сигнал «размазывается» в широкой полосе и становится меньше уровня шума.

В приемнике исходный сигнал восстанавливается с помощью такой же псевдослучайной последовательности (обратная операция). Любые другие сигналы, отличные от исходного, поступающие на данный приемник, воспринимаются как шум.

Технология DS-CDMA нашла применение в средствах связи благодаря таким тактико-техническим характеристикам, как помехозащищенность и помехоустойчивость, неподверженность интерференционным воздействиям и перехвату, низкие уровни радиоизлучений и надежность связи, возможность работы в режиме многолучевого распространения, практические трудности с обнаружением, что удовлетворяет требованиям скрытности и защиты от несанкционированного доступа к передаваемой информации.

2.8 Handover

  • Жесткий handover («break-before-make»). В этом случае соединение с текущей BTS прерывается, после чего создается соединение с новой. Из недостатков можно выделить вероятность кратковременного разрыва сессии данных, либо непредвиденного завершения вызова. В устаревших на сегодня аналоговых системах связи при жестком handover можно было услышать короткий щелчок или гудок. :)
  • Мягкий handover («make-before-break»). В этом случае телефон, не разрывая соединения с текущей BTS, устанавливает соединение с одной или несколькими другими, после чего передает сессию новой BTS и разрывает соединение с предыдущей. Недостатком данного метода являются более высокая цена компонентов телефона, позволяющих поддерживать соединение сразу с несколькими базовыми станциями.

Безопасность и конфиденциальность

Википедия, Безопасность GSMХабрахабр, Безопасность GSM сетей: шифрование данныхКуча презентаций и статей на данную тему в моем GitHub-репозитории

3.1 Основные векторы атак

прямые руки

  • Сниффинг
  • Утечка персональных данных, СМС и голосовых звонков
  • Утечка данных о местоположении
  • Спуфинг (FakeBTS или IMSI Catcher)
  • Удаленный захват SIM-карты, исполнение произвольного кода (RCE)
  • Отказ в обслуживании (DoS)

3.3 Аутентификация

  1. Абонент выполняет Location Update Request, затем предоставляет IMSI.
  2. Сеть присылает псевдослучайное значение RAND.
  3. SIM-карта телефона хэширует Ki и RAND по алгоритму A3. A3(RAND, Ki) = SRAND.
  4. Сеть тоже хэширует Ki и RAND по алгоритму A3.
  5. Если значение SRAND со стороны абонента совпало с вычисленным на стороне сети, значит абонент прошел аутентификацию.

Способы атаки

3.4 Шифрование трафика

  • A5/0 — формальное обозначение отсутствия шифрования, так же как OPEN в WiFi-сетях. Сам я ни разу не встречал сетей без шифрования, однако, согласно gsmmap.org, в Сирии и Южной Корее используется A5/0.
  • A5/1 — самый распространенный алгоритм шифрования. Не смотря на то, что его взлом уже неоднократно демонстрировался на различных конференциях, используется везде и повсюду. Для расшифровки трафика достаточно иметь 2 Тб свободного места на диске, обычный персональный компьютер с Linux и программой Kraken на борту.
  • A5/2 — алгоритм шифрования с умышленно ослабленной защитой. Если где и используется, то только для красоты.
  • A5/3 — на данный момент самый стойкий алгоритм шифрования, разработанный еще в 2002 году. В интернете можно найти сведения о некоторых теоретически возможных уязвимостях, однако на практике его взлом еще никто не демонстрировал. Не знаю, почему наши операторы не хотят использовать его в своих 2G-сетях. Ведь для СОРМ это далеко не помеха, т.к. ключи шифрования известны оператору и трафик можно довольно легко расшифровывать на его стороне. Да и все современные телефоны прекрасно его поддерживают. К счастью, его используют современные 3GPP-сети.

Способы атакипродемонстрировал

2.8 Handover

  • Жесткий handover («break-before-make»). В этом случае соединение с текущей BTS прерывается, после чего создается соединение с новой. Из недостатков можно выделить вероятность кратковременного разрыва сессии данных, либо непредвиденного завершения вызова. В устаревших на сегодня аналоговых системах связи при жестком handover можно было услышать короткий щелчок или гудок. :)
  • Мягкий handover («make-before-break»). В этом случае телефон, не разрывая соединения с текущей BTS, устанавливает соединение с одной или несколькими другими, после чего передает сессию новой BTS и разрывает соединение с предыдущей. Недостатком данного метода являются более высокая цена компонентов телефона, позволяющих поддерживать соединение сразу с несколькими базовыми станциями.

2.9 Кодирование речи

  • GSM-FR (Full Rate, 13 Кбит/с) — первый цифровой стандарт кодирования речи, обеспечивающий довольно низкое качество звука по сравнению с современными стандартами. Не смотря на существование более современных кодеков, GSM-FR до сих пор имеет очень широкое применение.
  • GSM-HR (Half Rate, 5,6 Кбит/с) — кодек, используемый телефонами в режиме энергосбережения. Занимает половину пропускной способности Full Rate канала. Экономия заряда аккумулятора может составлять до 30%.
  • GSM-EFR (Enhanced Full Rate, 12,2 Кбит/с) — алгоритм сжатия, разработанный компанией Nokia и университетом Шербрук, являющийся продолжением развития алгоритма GSM-FR. Обеспечивает хорошее качество связи, однако потребление электроэнергии при его использовании увеличивается примерно на 5% относительно GSM-FR.
  • AMR (Adaptive multi rate) — является алгоритмом адаптивного кодирования с переменной скоростью. Имеет широкое применение в сетях GSM и UMTS, обеспечивая высокую емкость сети одновременно с высоким качеством звука. Скорость кодирования/декодирования выбирается в зависимости от окружающих условий и загрузки сети.

Um-интерфейс (GSM Air Interface)

2.1 Частотные диапазоны

Um-интерфейс

Характеристики GSM-850 P-GSM-900 E-GSM-900 DCS-1800 PCS-1900
Uplink, МГц 824.2 — 849.2 890.0 — 915.0 880.0 — 915.0 1710.2 — 1784.8 1850.2 — 1909.8
Downlink, МГц 869.2 — 893.8 935.0 — 960.0 925.0 — 960.0 1805.2 — 1879.8 1930.2 — 1989.8
ARFCN 128 — 251 1 — 124 975 — 1023, 0 — 124 512 — 885 512 — 810

ARFCN (Absolute radio-frequency channel number)

2.2 Физические каналы, разделение множественного доступа

интерференциейFDMA (Frequency Division Multiple Access)TDMA (Time Division Multiple Access)CDMA (Code Division Multiple Access)PAMA (Pulse-Address Multiple Access)PDMA (Polarization Division Multiple Access)SDMA (Space Division Multiple Access)FDMATDMAControl Multiframe (содержит 51 фрейм)Traffic Multiframe (содержит 26 фреймов)
тутздесь

2.3 Логические каналы

  • каналы трафика (TCH — Traffic Channel),
  • каналы служебной информации (CCH — Control Channel).

TCH/FTCH/H

  • Широковещательные (BCH — Broadcast Channels).
    • FCCH — Frequency Correction Channel (канал коррекции частоты). Предоставляет информацию, необходимую мобильному телефону для коррекции частоты.
    • SCH — Synchronization Channel (канал синхронизации). Предоставляет мобильному телефону информацию, необходимую для TDMA-синхронизации с базовой станцией (BTS), а также ее идентификационные данные BSIC.
    • BCCH — Broadcast Control Channel (широковещательный канал служебной информации). Передает основную информацию о базовой станции, такую как способ организации служебных каналов, количество блоков, зарезервированных для сообщений предоставления доступа, а также количество мультифреймов (объемом по 51 TDMA-фрейму) между Paging-запросами.
  • Каналы общего назначения (CCCH — Common Control Channels)
    • PCH — Paging Channel. Забегая вперед, расскажу, что Paging — это своего рода ping мобильного телефона, позволяющий определить его доступность в определенной зоне покрытия. Данный канал предназначен именно для этого.
    • RACH — Random Access Channel (канал произвольного доступа). Используется мобильными телефонами для запроса собственного служебного канала SDCCH. Исключительно Uplink-канал.
    • AGCH — Access Grant Channel (канал уведомлений о предоставлении доступа). На этом канале базовые станции отвечают на RACH-запросы мобильных телефонов, выделяя SDCCH, либо сразу TCH.
  • Собственные каналы (DCCH — Dedicated Control Channels)
    Собственные каналы, так же как и TCH, выделяются определенным мобильным телефонам. Существует несколько подвидов:
    • SDCCH — Stand-alone Dedicated Control Channel. Данный канал используется для аутентификации мобильного телефона, обмена ключами шифрования, процедуры обновления местоположения (location update), а также для осуществления голосовых вызовов и обмена SMS-сообщениями.
    • SACCH — Slow Associated Control Channel. Используется во время разговора, либо когда уже задействован канал SDCCH. С его помощью BTS передает телефону периодические инструкции об изменении таймингов и мощности сигнала. В обратную сторону идут данные об уровне принимаемого сигнала (RSSI), качестве TCH, а также уровень сигнала ближайших базовый станций (BTS Measurements).
    • FACCH — Fast Associated Control Channel. Данный канал предоставляется вместе с TCH и позволяет передавать срочные сообщения, например, во время перехода от одной базовой станции к другой (Handover).
Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Работатека
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: