Оптико-волоконная связь: особенности, плюсы и минусы

История создания многоволоконных световодов[править]

В 1854 году, Джон Тиндаль обнаружил, что свет может быть проведен посредством изогнутой струей воды, доказав, что свет можно передавать так-же и по не прямолинейным путям. Позже в 1930 году, немецкий студент-медик Генрих Lamm, стал первым человеком, который догадался собрать пучок оптических волокон в один плотный жгут для передачи изображения на расстояние.

Таким образом были созданы многоволоконные световоды состоящие из большого числа параллельно уложенных волоконных световодов собранных по краям в общие торцы.

Это открытие привело к изобретению эндоскопов и фиброскопов. В 1960-е годы появились эндоскопы использующие в качестве гибкого светопроводящего материала стеклянные волокна, что позволяло передавать свет, даже при изгибании световода. При этом, появлялась возможность в режиме реального времени наблюдать и фотографировать процессы происходящие в ранее недоступных местах.

Применение многоволоконных световодов[править]

В 1964 году был изобретён фиброскоп, первое устройство используемое для исследования желудочной полости без операционного вмешательства. Это нововведение позволяло проводить более тщательное изучение, наблюдение и диагностику заболеваний внутренних органов человека.

Многоволоконные световоды находят широкое применение в науке, медицине а так-же и в приборостроении, для передачи изображения объектов, находящихся в труднодоступных местах, для последующего изучения и регистрации. При этом входной торец волоконного световода должен находиться в непосредственном контакте с поверхностью исследуемого объекта, либо изображение объекта должно быть спроецировано на входной торец жгута с помощью линзовой оптики (объектива). Каждое отдельное волокно такого жгута передаёт усредненный световой поток от точки поверхности входного торца, соответствующего сечению этого волокна. При этом изображение на выходной торец передается в виде мозаики. Такие многоволоконные световоды представляют собой пакет из параллельно уложенных тонких стеклянных светопроводящих нитей диаметром 10 — 20 мкм. Внешний слой этих нитей имеет толщину всего 1 — 3 мкм и изготовлен из стекла с показателем преломления меньшим, чем у сердцевины.

На основе многоволоконных световодов были созданы принципиально новые приборы для различного рода научных исследований. Так например использование световодов в оптической спектроскопии в ряде случаев устраняет необходимость отбора пробы и дает возможность реализовать процедуру промышленного анализа в режиме реального времени.

Многоволоконные световоды широко используются и в оптических методах контроля прозрачных объектов. С их помощью обнаруживают макро- и микродефекты, структурные неоднородности, внутренние напряжения (по вращению плоскости поляризации). Их использование резко расширило область применения оптических методов и повысило точность измерения.

С помощью многоволоконных световодов возможно производить оптическую дискретизацию исходного изображения и оценку размеров для чего на один из торцов жгута наносят измерительную шкалу.

Применение гибких волоконных световодов в пирометрах позволяет, например, осуществлять контроль воспламенения воздушно-топливной смеси в двигателях внутреннего сгорания в процессе их работы. Для этого входные торцы волоконнооптических жгутов устанавливаются в разных цилиндрах контролируемого объекта. Выходные торцы жгутов сформированы в виде одного кадра, что позволяет одновременно регистрировать процесс горения во всех контролируемых точках. При необходимости в том же кадре можно регистрировать излучение эталонного источника, поданное по отдельному жгуту.

Как привило, волокна для световода изготовляют из тяжелого стекла с оболочкой из более лёгкого стекла, диаметр волокна может составить несколько микрон, при толщине оболочки до одного микрона. Таким образом, разрешающая способность волоконных элементов может доходить до 100 линий на миллиметр, что хорошо согласуется с линейным разрешением обеспечиваемым приёмными устройствами большинства спектральных приборов, определяемыми зернистостью фотоэмульсии и шириной оптических щелей.

В настоящее время, широко доступны волоконные элементы изготовленные из стекла, что правда ограничивает их применение только видимой областью спектра. Использование волоконных световодов очень удобно для фотоэлектрического исследования близко расположенных участков спектра, например тесно расположенных спектральных линий, или контура спектральной линии. С помощью гибких волоконных световодов, каждый из участков спектра, легко вывести на отдельный фотоприёмник, что трудно сделать другими способами.

Волоконные световоды применяют и в тех случаях, когда источник освещения и регистрирующее устройство не могут быть достаточно удобно расположены относительно друг друга из-за сложной геометрии или например чрезмерных излучений источника освещения (тепловых или электромагнитных при использовании газоразрядных излучателей).

Стоит отметить, что изготовление волоконнооптических жгутов со строго параллельным и упорядоченным расположением волокон (для передачи изображения) связано со значительными технологическими трудностями.

Применение многоволоконных световодов[править | править код]

В 1964 году был изобретён фиброскоп, первое устройство используемое для исследования желудочной полости без операционного вмешательства. Это нововведение позволяло проводить более тщательное изучение, наблюдение и диагностику заболеваний внутренних органов человека.

Многоволоконные световоды находят широкое применение в науке, медицине а так-же и в приборостроении, для передачи изображения объектов, находящихся в труднодоступных местах, для последующего изучения и регистрации. При этом входной торец волоконного световода должен находиться в непосредственном контакте с поверхностью исследуемого объекта, либо изображение объекта должно быть спроецировано на входной торец жгута с помощью линзовой оптики (объектива). Каждое отдельное волокно такого жгута передаёт усредненный световой поток от точки поверхности входного торца, соответствующего сечению этого волокна. При этом изображение на выходной торец передается в виде мозаики. Такие многоволоконные световоды представляют собой пакет из параллельно уложенных тонких стеклянных светопроводящих нитей диаметром 10 — 20 мкм. Внешний слой этих нитей имеет толщину всего 1 — 3 мкм и изготовлен из стекла с показателем преломления меньшим, чем у сердцевины.

На основе многоволоконных световодов были созданы принципиально новые приборы для различного рода научных исследований. Так например использование световодов в оптической спектроскопии в ряде случаев устраняет необходимость отбора пробы и дает возможность реализовать процедуру промышленного анализа в режиме реального времени.

Многоволоконные световоды широко используются и в оптических методах контроля прозрачных объектов. С их помощью обнаруживают макро- и микродефекты, структурные неоднородности, внутренние напряжения (по вращению плоскости поляризации). Их использование резко расширило область применения оптических методов и повысило точность измерения.

С помощью многоволоконных световодов возможно производить оптическую дискретизацию исходного изображения и оценку размеров для чего на один из торцов жгута наносят измерительную шкалу.

Применение гибких волоконных световодов в пирометрах позволяет, например, осуществлять контроль воспламенения воздушно-топливной смеси в двигателях внутреннего сгорания в процессе их работы. Для этого входные торцы волоконнооптических жгутов устанавливаются в разных цилиндрах контролируемого объекта. Выходные торцы жгутов сформированы в виде одного кадра, что позволяет одновременно регистрировать процесс горения во всех контролируемых точках. При необходимости в том же кадре можно регистрировать излучение эталонного источника, поданное по отдельному жгуту.

Как привило, волокна для световода изготовляют из тяжелого стекла с оболочкой из более лёгкого стекла, диаметр волокна может составить несколько микрон, при толщине оболочки до одного микрона. Таким образом, разрешающая способность волоконных элементов может доходить до 100 линий на миллиметр, что хорошо согласуется с линейным разрешением обеспечиваемым приёмными устройствами большинства спектральных приборов, определяемыми зернистостью фотоэмульсии и шириной оптических щелей.

В настоящее время, широко доступны волоконные элементы изготовленные из стекла, что правда ограничивает их применение только видимой областью спектра. Использование волоконных световодов очень удобно для фотоэлектрического исследования близко расположенных участков спектра, например тесно расположенных спектральных линий, или контура спектральной линии. С помощью гибких волоконных световодов, каждый из участков спектра, легко вывести на отдельный фотоприёмник, что трудно сделать другими способами.

Волоконные световоды применяют и в тех случаях, когда источник освещения и регистрирующее устройство не могут быть достаточно удобно расположены относительно друг друга из-за сложной геометрии или например чрезмерных излучений источника освещения (тепловых или электромагнитных при использовании газоразрядных излучателей).

Стоит отметить, что изготовление волоконнооптических жгутов со строго паралельным и упорядоченным расположением волокон (для передачи изображения) связано со значительными технологическими трудностями.

Применение линий оптоволоконной связи

Оптоволокно активно применяется для построения городских, региональных и федеральных сетей связи, а также для устройства соединительных линий между городскими АТС. Это связано с быстротой, надёжностью и высокой пропускной способностью волоконных сетей. Также посредством применения оптоволоконных каналов существуют кабельное телевидение, удалённое видеонаблюдение, видеоконференции и видеотрансляции, телеметрические и другие информационные системы. В перспективе в оптоволоконных сетях предполагается использовать преобразование речевых сигналов в оптические.

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

Санкт-Петербургский национальный исследовательский университет

информационных технологий, механики и оптики

Факультет
ИКВО
Кафедра
МИПиУ

Направление (специальность)
090900 «Информационная безопасность»
Группа
2750

Квалификация (степень)
бакалавр

Реферат

По курсу «Концепции современного естествознания»

Волоконно-оптическая связь.

Выполнил:

Студент 2-го курса

гр. 2750

Богопольская Е.А.

Принял:

к.т.н., доцент каф.ПБКС

Комарова И.Э.

Г.С-Петербург

1. Основные понятия………………………………1

2.Материалы…………………………………………..2

3.История……………………………………………2

4.Классификация……………………………………3

5.Элементы волоконно-оптических линий………7

6.Преимущества оптоволоконного типа связи……9

7.Недостатки оптоволоконного типа связи……….9

8.Применение линий оптоволоконной связи…….9

Материалы

Стеклянные оптические волокна делаются из кварцевого стекла, но для дальнего инфракрасного диапазона могут использоваться другие материалы, такие как флуоро-цирконат, флуоро-алюминат и халькогенидные стекла. Как и другие стекла, эти имеют показатель преломления около 1,5.

В настоящее время развивается применение пластиковых оптических волокон (Plastic optical fibers).

В качестве источников излучения света в волоконно-оптических кабелях применяются:

  1. светодиоды, или светоизлучающие диоды (Light Emmited Diode, LED);
  2. полупроводниковые лазеры, или лазерные диоды (Laser Diode).

Для одномодовых кабелей применяются только лазерные диоды, так как при таком малом диаметре оптического волокна световой поток, создаваемый светодиодом, невозможно без больших потерь направить в волокно он имеет чересчур широкую диаграмму направленности излучения, в то время как лазерный диод узкую. Поэтому более дешевые светодиодные излучатели используются только для многомодовых кабелей.

История

Волоконная оптика хоть и является повсеместно используемым и популярным средством обеспечения связи, сама технология проста и разработана достаточно давно. Эксперимент с переменой направления светового пучка путем преломления был продемонстрирован Даниелем Колладоном (Daniel Colladon) и Жаком Бабинеттом (Jacques Babinet) еще в 1840 году. Спустя несколько лет Джон Тиндалл (John Tyndall) использовал этот эксперимент на своих публичных лекциях в Лондоне, и уже в 1870 году выпустил труд, посвященный природе света. Практическое применение технологии нашлось лишь в ХХ веке. В 20-х годах прошлого столетия экспериментаторами Кларенсом Хаснеллом (Clarence Hasnell) и Джоном Бердом (John Berd) была продемонстрирована возможность передачи изображения через оптические трубки. Этот принцип использовался Генрихом Ламмом (Heinrich Lamm) для медицинского обследования пациентов. Только в 1952 году индийский физик Нариндер Сингх Капани (Narinder Singh Kapany) провел серию собственных экспериментов, которые и привели к изобретению оптоволокна. Фактически им был создан тот самый жгут из стеклянных нитей, причем оболочка и сердцевина были сделаны из волокон с разными показателями преломления. Оболочка фактически служила зеркалом, а сердцевина была более прозрачной так удалось решить проблему быстрого рассеивания. Если ранее луч не доходил да конца оптической нити, и невозможно было использовать такое средство передачи на длительных расстояниях, то теперь проблема была решена. Нариндер Капани к 1956 году усовершенствовал технологию. Связка гибких стеклянных прутов передавала изображение практически без потерь и искажений.

Изобретение в 1970 году специалистами компании Corning оптоволокна, позволившего без ретрансляторов продублировать на то же расстояние систему передачи данных телефонного сигнала по медному проводу, принято считать переломным моментом в истории развития оптоволоконных технологий. Разработчикам удалось создать проводник, который способен сохранять не менее одного процента мощности оптического сигнала на расстоянии одного километра. По нынешним меркам это достаточно скромное достижение, а тогда необходимое условие для того, чтобы развивать новый вид проводной связи.

Первоначально оптоволокно было многофазным, то есть могло передавать сразу сотни световых фаз. Причём повышенный диаметр сердцевины волокна позволял использовать недорогие оптические передатчики и коннекторы. Значительно позже стали применять волокно большей производительности, по которому можно было транслировать в оптической среде лишь одну фазу. С внедрением однофазного волокна целостность сигнала могла сохраняться на большем расстоянии, что способствовало передаче немалых объёмов информации.

Самым востребованным сегодня является однофазное волокно с нулевым смещением длины волны. Начиная с 1983 года оно занимает ведущее положение среди продуктов оптоволоконной индустрии, доказав свою работоспособность на десятках миллионов километров.

Классификация

Выделяют несколько классов оптоволокон по особенностям структуры и принципу действия:

  1. Одномодовые оптоволокна
  2. Многомодовые оптоволокна
  3. Оптоволокна с градиентным показателем преломления

Оптоволокна со ступенчатым профилем распределения показателей преломления.

Профиль показателя преломления различных типов оптических волокон: многомодовое волокно со ступенчаты изменением показателя преломления (а); многомодовое волокно с плавным изменением показателя преломления (6); одномодовое волокно (в).

1.1. Общие положения

В одномодовых оптических волокнах (SM ОВ) диаметр сердцевины соизмерим с длиной волны, и за счет этого в нем существует только одна основная направляемая мода LP01.

Рис. 1.12. Распространение основной моды LP01 в ступенчатых одномодовых волоконных световодах.

В соответствии с рекомендациями МСЭ-Т в настоящее время различают четыре типа одномодовых оптических волокон (рис. 1.13):

  • волокна с нулевой дисперсией (стандартные волокна SSF) – рек МСЭ-Т G.652;
  • волокна со смещенной дисперсией (DSF) – рек. МСЭ-Т G.653;
  • волокна с минимизацией потерь на длине волны 1550 нм (Low Loss) – рек. МСЭ-Т G.654;
  • волокна с ненулевой смещенной дисперсией (NZDSF) – рек. МСЭ-Т G.655.

Рис. 1.13. Геометрические параметры одномодовых оптических волокон.

1.2.4. Геометрические параметры световода

Формальные выкладки удобнее производить для ступенчатого световода, в котором показатель преломления сердцевины является постоянной величиной (n1=const). На рисунке 1.6 показан ход лучей в таком световоде.

Рисунок 1.6 – Ход лучей в волоконном световоде со ступенчатым профилем показателя преломления

  1. Относительная разность показателей преломления. Будем обозначать через n1 и n2 показатели преломления сердцевины и оболочки, соответственно. Один из важных параметров, который характеризует световод, это – относительная разность показателей преломления Δ :
    Δ=(n1-n2)/n1 (1.1)
  2. Критический угол падения. Распространение света по световоду можно объяснить на основе закона полного внутреннего отражения, вытекающего из закона преломления света, установленного в 1621г. нидерландским астрономом и математиком Виллебрордом Снеллиусом:

    n1sinθ1=n2sinθ2, (1.2)

    где n1 – показатель преломления среды 1;θ1 – угол падения;n2 – показатель преломления среды 2;θ2– угол преломления.
    Рассмотрим три случая:
    а) Так как сердцевина является оптически более плотной средой по отношению к оболочке (n1>n2), то существует критический угол падения θ1kp – внутренний угол падения на границу, при котором преломлённый луч (луч1) идёт вдоль границы сред (θ2=90o).
    Из закона Снеллиуса легко найти этот критический угол падения:

    n1sinθkp=n2, θkp=arcsin(n2/n1). (1.3)

    б) Если угол падения на границу раздела меньше критического угла падения θ1kp, то при каждом внутреннем отражении часть энергии выходит наружу в виде преломлённого луча, что приводит в конечном итоге к затуханию света (луч 2).
    в) Если же угол падения больше критического угла θ1kp, то при каждом отражении от границы вся энергия возвращается обратно в сердцевину благодаря полному внутреннему отражению (луч 3).

  3. Числовая апертура. Режим полного внутреннего отражения предопределяет условия ввода света на входной торец волоконного световода. Из рисунка 1.6 видно, что световод удерживает лишь свет, заключённый в пределах некоторого телесного угла θA, величина которого обусловлена углом полного внутреннего отраженияθkp.
    При угле падения, равном критическому ( θ1kp).

    nsinθA=n1sin(90o-θkp)=n1cosθkp. (1.4)

    где n – показатель преломления вакуума.

    Воспользуемся выражением n1sinθkp=n2 и выразим sinθA через показатель преломления сердцевины и оболочки, полагая n=1:

    n1sinθkp=n2,  cos2θkp=1-sin2θkp=(n12-n22)/n12,sinθA=n1cosθkp=√(n12-n22).

    Чем больше угол θA , тем большая часть падающего на торец световода света может быть введена в световод и будет в нём распространяться за счёт полного внутреннего отражения.
    Величину

    NA=sinθA (n=1) (1.5)

    называют числовой апертурой (NA — numerical aperture) световода (по аналогии с термином, используемым в оптике для определения способности микрообъективов собирать свет).
    Числовая апертура – характеристика предельного угла θ, при котором входящие в ВС лучи испытывают полное внутренне отражение и ещё сохраняют возможность распространяться по сердцевине волокна.
    Отметим, что NA является безразмерной величиной.
    Для ВС со ступенчатым профилем показателя преломления (ППП) числовая апертура обычно равна 0,18–0,23, а с градиентным – 0,13–0,18.
    Фирмы-изготовители волокна указывают соответствующее значение числовой апертуры. Для волокна со ступенчатым ППП, как получено выше, значение числовой апертуры, выражается через показатели преломления:

    NA=√(n12-n22). (1.6)

    Для градиентного волокна используется понятие локальной числовой апертуры

    NA(r)=√(n12(r)-n22). (1.7)

    значение которой максимально на оси и падает до 0 на границе сердцевины и оболочки. Для градиентного волокна с параболическим ППП используется понятие эффективной числовой апертуры:

    NAэфф=[√(n12(0)-n22)]/√ 2. (1.8)

    где n1(0) – максимальное значение показателя преломления.

  4. Нормированная частота. частотойОказывается целесообразным ввести нормированную частоту ν, которая объединяет структурные параметры ВС и длину волны излучения:

    ν=π dcNA/λ, (1.9)

    где dc – диаметр сердцевины ВС;λ – длина волны излучения;NA – числовая апертура ВС.

Предыдущая Оглавление Следующая

История

Историю систем передачи данных на большие расстояния следует начинать с древности, когда люди использовали дымовые сигналы. С того времени эти системы кардинально улучшились, появились сначала телеграф , затем — коаксиальный кабель . В своем развитии эти системы рано или поздно упирались в фундаментальные ограничения : для электрических систем это явление затухания сигнала на определённом расстоянии, для сверхвысокочастотных (СВЧ) систем — несущая частота. Поэтому продолжались поиски принципиально новых систем, и во второй половине XX века решение было найдено — оказалось, что передача сигнала с помощью света гораздо эффективнее как электрического, так и СВЧ-сигнала.

В 1966 году Као и Хокам из STC Laboratory (STL) представили оптические нити из обычного стекла, которые имели затухание в 1000 дБ/км (в то время как затухание в коаксиальном кабеле составляло всего 5-10 дБ/км) из-за примесей, которые в них содержались и которые, в принципе, можно было удалить.

Существовало две глобальных проблемы при разработке оптических систем передачи данных: источник света и носитель сигнала. Первая разрешилась с изобретением лазеров в 1960 году, вторая — с появлением высококачественных оптических кабелей в 1970 году. Это была разработка Corning Incorporated (англ.
)
. Затухание в таких кабелях составляло около 20 дБ/км, что было вполне приемлемым для передачи сигнала в телекоммуникационных системах. В то же время были разработаны достаточно компактные полупроводниковые GaAs-лазеры.

После интенсивных исследований в период с 1975 по 1980 год появилась первая коммерческая волоконно-оптическая система, оперировавшая светом с длиной волны 0,8 мкм и использовавшая полупроводниковый лазер на основе арсенида галлия (GaAs). Битрейт систем первого поколения составлял 45 Мбит/с, расстояние между повторителями — 10 км.

22 апреля 1977 года в Лонг-Бич, штат Калифорния, компания General Telephone and Electronics впервые использовала оптический канал для передачи телефонного трафика на скорости 6 Мбит/с.

Второе поколение волоконно-оптических систем было разработано для коммерческого использования в начале 1980-х. Они оперировали светом с длиной волны 1,3 мкм от InGaAsP-лазеров. Однако такие системы всё ещё были ограниченны из-за рассеивания, возникающего в канале. Однако уже в 1987 году эти системы работали на скорости до 1,7 Гбит/с при расстоянии между повторителями 50 км.

Предисловие

1 РАЗРАБОТАН Открытым акционерным обществом «Всероссийский научно-исследовательский, проектно-конструкторский и технологический институт кабельной промышленности» (ОАО «ВНИИКП»)

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 46 «Кабельные изделия»

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 11 октября 2016 г. N 1358-ст

4 ВВЕДЕН ВПЕРВЫЕ

5 ПЕРЕИЗДАНИЕ. Февраль 2020 г.

Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. N 162-ФЗ «О стандартизации в Российской Федерации». Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

1.4. Волокна с минимизацией потерь в третьем окне прозрачности

Волокна с минимизацией потерь (Low Loss Fibers) на длине волны l=1550 нм (рек. МСЭ-Т G.654) являются модификацией волокон SSF с уменьшенными потерями (менее 0,18 дБ/км) в третьем окне прозрачности. Низкое затухание достигается за счет применения кварца сверхвысокой степени очистки для сердцевины, что позволяет существенно снизить потери, обусловленные поглощением на примесях, а также формирования больших значений длины волны отсечки для уменьшения чувствительности к потерям, обусловленным изгибами волокна. Условие полного внутреннего отражения требует выполнения неравенства n1>n2, поэтому при изготовлении оболочки используются такие легирующие добавки, как фтор, позволяющие уменьшить значение показателя преломления, по сравнению с исходным, соответствующим чистому кварцу.

В качестве примера, в табл. 1.3 приведены значения параметров передачи волокон с минимизацией потерь на длине волны 1550 нм производства компании Sumitomo Electric Industries Ltd. .

Таблица 1.3.

Sumitomo Electric Industries Ltd.

 

a, дБ/км

D, пс/(нм.км)

Z-FiberÔ

0,170

18,5

Z-PLUS-FiberÔ

0,168

20,5

Из-за трудности производства эти волокна очень дороги и крайне редко используются.

Основная область применения этого волокон ­Low Loss – трансконтинентальные ВОЛП, где они обеспечивают возможность передачи сигналов на огромные расстояния без установки активных элементов.

1.3. Волокна со смещенной дисперсией

В 1985 г. был создан новый тип одномодовых оптических волокон – волокон со смещенной дисперсией DSF (Dispersion Shifted Fibers) (рек. МСЭ-Т G.653).

Рис. 1.15. Профиль показателя преломления оптического волокна DSF Triguide (Sumsung Electronics Industries Ltd).

Длина волны нулевой дисперсией у волокон DSF смещена в область третьего окна прозрачности (l=1550 нм), которому соответствует минимальный коэффициент затухания. Смещение дисперсии достигается путем формирования профиля показателя преломления специальной формы, например, треугольной или W-образной треугольной (рис. 1.15).

Предполагалось, что сочетание низкой дисперсии, малого затухания, возможности согласования с оптическими усилителями на базе волокон, легированных эрбием EDFA (Erbium Doped Fiber Amplifiers), сделает эти оптические волокна идеальными для работы с одномодовыми ОСП в третьем окне прозрачности на длине волны l=1550 нм. Однако последующее изучение нелинейных эффектов изменило эту точку зрения.

Рынок волокон DSF составляют трансконтинентальные ВОЛП, в которых одна длина волны передается на расстояние в несколько тысяч километров, а также магистральные ВОЛП.

Волокна DSF идеальны для работы в третьем окне прозрачности на одной оптической несущей.

При спектральном уплотнении в области l=1550 нм применение волокон DSF приводит к существенным искажениям передаваемых сигналов. По этой причине использование волокон DSF совместно с аппаратурой ОСП WDM неприемлемо. В результате в последние годы производство волокон данного типа резко снизилось.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Работатека
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: