Для чего нужен экран в кабеле

3.5.12. Заземление на взрывоопасных объектах

На взрывоопасных промышленных объектах (см. раздел «Автоматизация опасных объектов») при монтаже цепей заземления многожильным проводом не допускается применение пайки для спаивания жил между собой, поскольку вследствие хладотекучести припоя возможно ослабление мест контактного давления в винтовых зажимах.

Экран кабеля интерфейса RS-485 заземляется в одной точке, вне взрывоопасной зоны. В пределах взрывоопасной зоны он должен быть защищен от случайного соприкосновения с заземленными проводниками. Искробезопасные цепи не должны заземляться, если этого не требуют условия работы электрооборудования (ГОСТ Р 51330.10, раздел ).

Искробезопасные цепи должны быть смонтированы таким образом, чтобы наводки от внешних электромагнитных полей (например, от расположенного на крыше здания радиопередатчика, от воздушных линий электропередачи или близлежащих кабелей для передачи большой мощности) не создавали опасного напряжение или тока в искробезопасных цепях. Это может быть достигнуто экранированием или отдалением искробезопасных цепей от источника электромагнитной наводки.

При прокладке в общем пучке или канале кабели с искроопасными и искробезопасными цепями должны быть разделены промежуточным слоем изоляционного материала или заземленной металлической перегородкой. Никакого разделения не требуется, если используются кабели с металлической оболочкой или экраном.

Заземленные металлические конструкции не должны иметь разрывов и плохих контактов между собой, которые могут искрить во время грозы или при коммутации мощного оборудования.

На взрывоопасных промышленных объектах используются преимущественно электрические распределительные сети с изолированной нейтралью, чтобы исключить возможность появления искры при коротком замыкании фазы на землю и срабатывания предохранителей защиты при повреждении изоляции.

Для защиты от статического электричества используют заземление, описанное в разделе . Статическое электричество может быть причиной воспламенения взрывоопасной смеси. Например, при емкости человеческого тела 100…400 пФ и потенциале заряда 1 кВ энергия искрового разряда с тела человека будет равна 50…200 мкДж, что может быть достаточно для воспламенения взрывоопасной смеси группы IIC (60 мкДж), см. [].

3.5.1. Гальванически связанные цепи

Мы рекомендуем избегать применения гальванически связанных цепей, а если другого варианта нет, то желательно, чтобы размер этих цепей был по возможности малым и чтобы они располагались в пределах одного шкафа.

Примером гальванически связанной цепи является соединение источника и приемника стандартного сигнала 0…5 В (, ). Чтобы пояснить, как правильно выполнить заземление, рассмотрим вариант неправильного () и правильного (, монтажа. На допущены следующие ошибки:

  • ток мощной нагрузки (двигателя постоянного тока) протекает по той же шине заземления, что и сигнал, создавая падение напряжения ;
  • использовано однополярное включение приемника сигнала, а не дифференциальное;
  • использован модуль ввода без гальванической развязки цифровой и аналоговой части, поэтому ток питания цифровой части, содержащий помеху, протекает через вывод AGND (Analog GrouND — «аналоговая земля») и создает дополнительное падение напряжения помехи на сопротивлении .

Перечисленные ошибки приводят к тому, что напряжение на входе приемника равно сумме напряжения сигала и напряжения помехи . Для устранения этого недостатка в качестве проводника заземления можно использовать медную шину большого сечения, однако лучше выполнить заземление так, как показано на , а именно:

  • все цепи заземления соединить в одной точке. При этом ток помехи уже не протекает через сопротивление ;
  • проводник заземления приемника сигнала присоединить к той же общей точке. При этом ток уже не протекает через сопротивление , а падение напряжения на сопротивлении проводника не складывается с выходным напряжением источника сигнала .

Общим правилом ослабления связи через общий провод заземления является деление земель на аналоговую, цифровую, силовую и защитную с последующим их соединением только в одной точке. При разделении заземлений гальванически связанных цепей используется общий принцип: цепи заземления с большим уровнем помех должны выполняться отдельно от цепей с малым уровнем помех, а соединяться они должны только в одной общей точке. Точек заземления может быть несколько, если топология такой цепи не приводит к появлению участков «грязной» земли в контуре, включающем источник и приемник сигнала, а также если в цепи заземления не образуются замкнутые контуры, по которым циркулирует ток, наведенный электромагнитной помехой.

Рис. 3.95. Пример неправильного заземления

Недостатком метода разделения проводников заземления является низкая эффективность на высоких частотах, когда большую роль играет взаимная индуктивность между рядом идущими проводниками заземления, которая только заменяет гальванические связи на индуктивные, не решая проблемы в целом.

Большая длина проводников приводит также к увеличению сопротивления заземления, что важно на высоких частотах. Поэтому заземление в одной точке используется на частотах до 1 МГц, свыше 10 МГц заземлять лучше в нескольких точках, в промежуточном диапазоне от 1 до 10 МГц следует использовать одноточечную схему, если наиболее длинный проводник в цепи заземления меньше 1/20 от длины волны помехи

В противном случае используется многоточечная схема [].

Заземление в одной точке часто используется в военных и космических устройствах [].

Рис. 3.96. Пример решения проблемы, указанной на

Схемы подключения УЗИП

Вот две упрощенные схемы подключения УЗИП, которые приводятся во многих нормативных документах.

На первой, аппарат защиты ставится последовательно перед самим УЗИП. Он главным образом нужен для работы в аварийном режиме, когда на УЗИП происходит короткое замыкание.

При этом везде говорится, что ни в коем случае нельзя последовательно с УЗИП ставить автоматический выключатель, а нужно использовать только предохранители. Почему так?

Автомат в своей конструкции имеет соленоид (катушку), через которую проходит ток, создающий магнитное поле для срабатывания механизма и разрыва цепи. Но индуктивность катушки, помноженная на производную от тока молнии — это дополнительное напряжение, которое возникнет на самой катушке.

Представьте себе, что у вас мизерная катушка, имеющая индуктивность в 1мкГн/м. При огромной крутизне тока молнии, на этой самой катушке может появиться напряжение до 100кВ!

Кроме того, по правилам не рекомендуется, чтобы от точки подключения УЗИП до места заземления было больше 0,5м. Лишнее расстояние здесь также критично. А катушка это опять же дополнительные витки.

И это еще не учитывая воздействие импульсного тока на элементы выключателя.

Хорошо, если ставить непосредственно перед УЗИП нельзя, давайте разместим автоматический выключатель соответствующей величины параллельно. УЗИП мы “врезаем” в цепь напряжения напрямую, а защиту обеспечиваем в «голове».

Однако и здесь возникает проблема. При повреждении УЗИП вводной выключатель обесточит полностью весь объект, что опять же недопустимо на ответственных нагрузках.

Поэтому все как один и рекомендуют схему с предохранителями.

Назначение экранированных кабелей

Что значит экранированный кабель и какие функции выполняет экран, важно знать при монтаже смешанной проводки. К примеру, если в одной канавке необходимо провести силовую жилу и связь, то в этом случае рекомендуют использовать экранированный кабель

Что это такое, необходимо знать, если вы собираетесь проводить монтаж собственными силами. По сути, это обычный провод, оснащенный защитным экраном, который является своеобразной изоляцией против воздействия электрических полей. Он действует как внутри, так и снаружи.

Однако провода экранируются и с другой целью, выполняя иные функции:

  • увеличение надежности изоляционного слоя;
  • повышение стойкости;
  • защита от воздействия внешней среды;
  • выступает в роли заземляющего проводника.

Технические характеристики экранированных кабелей

Если взять неэкранированный и экранированный провод, то последний будет иметь ряд преимуществ: 1. Защитные функции от воздействия внешних электромагнитных полей. 2. Защита электрооборудования от внутреннего воздействия токов. 3. Защита проводки и блочных устройств от потенциальных токов. Оптимальное напряжение используемое при прокладке контрольных проводников составляет 660 В/100 Гц, а для силовых — 660 В/1000 Гц. Допустимая температура эксплуатации от -50 до 50 градусов, а минимальная температура при монтаже — 15 градусов ниже ноля. Срок службы экранированной проводки от 25 и более лет.

Кабель КГЭ силовой медный экранированный

Силовой КГЭ проводник предназначен для подключения различных механизмов и техники, способной передвигаться и оснащенных системами защитного отключения при однофазном замыкании.

Чаще всего, их используют во внешних сетях, где присутствуют помехи наружного характера. Также они применяются в подземных коммуникациях и в помещения с огромной электромагнитной нагрузкой. При подключении оборудования, работающего от высоковольтных линий, а также если возникают вихревые токи и электромагнитные помехи, в оборудовании, запитанном от разных источников с индивидуальным заземлением.

Провод КГЭ представляет собой группу экранированных проводников витая пара, каждая жила которой состоит их множества волокон. Каждая жила имеет свою изоляцию и цвет. Кроме этого, силовой проводник оснащен общей полимерной оболочкой, имеющей высокие показатели прочности и температуру монтажа (от -45 до 70 градусов). Между наружной и внутренней оболочками размещается алюминиевая оплетка. Также здесь размещена индивидуальная заземляющая жила с собственной изоляцией, которую часто используют в роли монтажного троса.

Акустический провод экранированный: особенности и виды

Акустический провод с экраном, представляет собой двухжильный или многожильный провод, изолированный полимерными материалами (тефлон, полиуретан, поливинилхлорид). Для удобства они окрашены разным цветом. Основным токопроводящим элементом является медь, а экран представлен в виде металлической или пластиковой оболочки, препятствующей воздействию внешних токов, влияющих на качество звука.

Современные акустические шнуры подразделяются на несколько видов:

  1. Балансный экранированный кабель — используется для аудио систем, имея два стержня, несущих идентичную информацию, с различной сходностью.
  2. Star Quad — акустический провод, имеющий две пары изолированных стержней, которые имеют параллельное соединение.
  3. Проводник, покрытый пластиковой оболочкой. Его часто используют при незначительном расстоянии (к примеру: для аудио установки авто).
  4. Одножильный экранированный провод применяется для записывающих аудио- или видеоустройств.

Что такое межкабельные наводки?

Межкабельные наводки можно определить как нежелательные электромагнитные сигналы от проложенных в жгутах смежных кабелей. Измеряются как отношение сигнала, подаваемого на активную витую пару (пары) одного кабеля, к сигналу, наведенному в контрольной паре другого кабеля.

Наибольший уровень наводок возникает между витыми парами, имеющими одинаковый шаг скрутки. Все проводники имеют цветовую маркировку, потому можно говорить, например, о наводках между синими или коричневыми парами.

Если в жгуте более двух кабелей, появляется эффект суммарных наводок. Кроме равношаговых, и остальные пары оказывают негативное воздействие.

Как и для помех между парами, межкабельные наводки могут быть двунаправленными (Alien NEXT) и однонаправленными (Alien FEXT). В данной статье анализируются только двунаправленные наводки.

Сечение экранированного силового кабеля для прокладки под землей в траншее

Экранирование кабелей применяется в следующих основных случаях:

  • Кабели на напряжение свыше 2 кВ, проложенные в земле или в воде, а также проходящие в непосредственной близости от металлических конструкций. Наличие экрана предотвращает возникновение коронных разрядов между токопроводящими жилами и почвой (водой, металлическими конструкциями). Такие разряды приводят к разрушению изоляции кабеля.
  • Рядом с силовым кабелем проходят сигнальные кабели, чувствительные к наводкам. Это требование закреплено в ПУЭ-7, п. 3.4.11
  • Кабели, соединяющие частотно-регулируемый привод с мотором. Это связано с тем, что энергия по такому кабелю передается на частотах порядка десятков кГц.

Силовые кабели, прокладываемые в земле и в воде, также часто имеют металлическую броню. Эта броня предназначена для механической защиты кабеля, тем не менее, она обладает экранирующими свойствами. Согласно ПУЭ-7, п. 3.4.11, наличие брони или металлической оболочки обязательно для кабеля, соединяющего вторичную обмотку трансформатора на напряжение 110 кВ и выше, со щитом.

Зависимость сечения силового кабеля от мощности светодиодного экрана

Сечение силового кабеля для светодиодного экрана прямо пропорционально его мощности. Чем она больше, тем толще должен быть кабель, иначе провод, в лучшем случае, расплавиться, в худшем — произойдет возгорание. 1 квадратный миллиметр медного провода длительно способен пропускать не более 10 А тока.

Например, если есть экран площадью 10 кв. мм, с максимальной потребляемой мощностью 1172 Вт/ кв. м, который работает от напряжения питания в 220 В, получим 1172*10/220*10=5,33 мм. Вкладываем 15% запаса по сечению (+ 0,9 мм ), получаем округленно 6, 23 мм. Далее по таблице выбираем кабель подходящего сечения.

Данные для силового кабеля отображены в следующих таблицах:

Медный кабель

Сечение кабеля, кв. мм Медный кабель, проложенный открытым способом Медный кабель, проложенный в трубе
Ток Мощность, кВт Ток, А Мощность, кВт
А U 220 В U 380 В А U 220 В U 380 В
0,5 11 2,4
0,75 15 3,3
1 17 3,7 6,4 14 14 5,3
1,5 23 5 8,7 15 15 5,7
2 26 5,7 9,8 19 19 7,2
2,5 30 6,6 11 21 21 7,9
4 41 9 15 27 27 10
6 50 11 19 34 34 12
10 80 17 30 50 50 19
16 100 22 38 80 80 30
25 140 30 53 100 100 38
35 170 37 64 135 135 51

Алюминиевый кабель

Сечение кабеля, кв. мм Алюминиевый кабель, проложенный открытым способом Алюминиевый, проложенный в трубе
Ток Мощность, кВт Ток, А Мощность, кВт
А U 220 В U 380 В А U 220 В U 380 В
2 21 4,6 7,9 14 3 5,3
2,5 24 5,2 9,1 16 35 6
4 32 7 12 21 4,6 7,9
6 39 8,2 14 26 5,7 9,8
10 60 13 22 38 8,3 14
16 75 16 28 55 12 20
25 105 23 39 65 14 24
35 130 28 49 75 16 28

В жилых, офисных и промышленных зданиях алюминиевые кабели не прокладывают. Их использование возможно лишь для автономно стоящих уличных светодиодных экранов после одобрения специалистом.

Потребляемую мощность берут из паспорта светодиодного экрана. Производитель указывает максимальную и среднюю величину.

Для определения сечения кабеля берут именно максимальное значение, которое может в разы превышать усредненную (рабочую) потребляемую мощность. Напряжение (U) также указывается в сопроводительной документации.

Основные виды помех в электросети

Существует целая масса причин, из-за которых возникают различного рода помехи. В любой сети могут наблюдаться как импульсные, так и высокочастотные помехи. Первые возникают во время включения и выключения прибора и являются наиболее опасными для бытовой техники. Физически собой они представляют скоротечное повышение амплитуды напряжения. Резкий перепад напряжения является фатальными для многих микросхем, которыми оснащены современные устройства.

Что касается высокочастотных помех, то здесь стоит отметить, что они наблюдаются в сети практически всегда. Полностью избавиться от них не представляется возможным. Наблюдать ВЧ-помехи можно во время работы холодильника, кофеварки и других приспособлений. Передаются они не только по проводам, но и по эфиру. Однако большой угрозы они не представляют и на срок службы домашней техники практически не влияют.

Аналоговые и цифровые линии

Влияние помех различно на аналоговых и цифровых линиях. В случае цифровой линии помеха должна лишь не быть сопоставимой с разницей уровней разных цифровых сигналов, и тогда ее можно игнорировать. В случае же аналоговой линии, в которой значение напряжения или тока может изменяться непрерывно, даже небольшая помеха может существенно нарушить работу системы (или недопустимо снизить точность работы системы). Конечно, наиболее очевидно влияние помех на НЧ-видеосигнал. Помехи на экране, даже небольшие, сильно раздражают оператора.

Второй пример аналоговых сигналов – датчики температуры и т.д. в системах кондиционирования и вентиляции. Помехи приведут не только к низкой точности стабилизации температуры, но и к повышенной частоте включений/отключений мощных устройств (моторов), что отрицательно скажется на их сроке службы.

Как классифицировать? К аналоговым цепям относятся многие пери-метровые кабельные датчики вибрации. Сложно сказать, как следует классифицировать неадресные шлейфы сигнализации, предназначенные для подключения «сухих» контактов. Если на шлейфе есть всего один «сухой» контакт – это, безусловно, цифровая (дискретная) линия. Однако в большинстве случаев шлейф также контролируется на обрыв и короткое замыкание, а если в шлейфе различается более одной тревоги (например, в двухпороговых пожарных ППК различаются пожар-1 и пожар-2, а в некоторых охранных ППК реализовано «удвоение шлейфа», то есть различение извещателей с разными балластными резисторами), то в результате в шлейфе необходимо выделять почти 10 разных уровней сигнала, причем некоторые пороги довольно близки между собой и даже небольшая помеха может сильно сказаться на достоверности данных.

Проблема неадресных шлейфов Особенно подвержены помехам двухпроводные шлейфы с питаемыми по шлейфу извеща-телями (а это почти все традиционные неадресные пожарные извещатели). Смешение в одном кабеле тока питания и измерительного сигнального тока при простейшем алгоритме определения наличия сигнала означает высокую чувствительность к помехам, особенно если имеется нестабильность токов питания извещате-лей, а нередко встречается еще и превышение допустимого суммарного тока питания.

В целом классические неадресные шлейфы не следует делать очень длинными. По возможности следует разносить по зданию устройства, связанные цифровыми линиями (типа RS-485 или адресным шлейфом), а по сути своей аналоговые неадресные шлейфы лучше тянуть на минимально необходимое расстояние.

Нюансы адресных шлейфов Цифровые линии не столь подвержены влиянию помех, хотя двухпроводный адресный шлейф, по которому подается питание адресных устройств и передаются данные, конечно, более чувствителен к помехам, чем 4-провод-ный, с раздельными линиями данных и питания. С другой стороны, существенно, какова амплитуда полезного сигнала и каково эффективное сопротивление линии. Чем больше сопротивление, тем больше будет амплитуда помех. Но если в двухпроводном адресном шлейфе амплитуда полезного сигнала составляет 20–30 В – это намного надежнее, чем 1–2 В на линиях RS-485.

Меньше скорость – выше помехоустойчивость В целом чем проще (медленнее) линия передачи данных, тем менее она чувствительна к помехам, но только в случае, если оборудование предназначено для такой скорости

Обратите внимание, если оборудование одного производителя, предназначенное для совместной работы, может иметь специальные приемопередатчики RS-485, предназначенные для надежной низкоскоростной работы (ориентированные на 100–200 кбит), то применение, скажем, конвертора-усилителя общего назначения (на стандартные 5 мегабит) сразу же резко снижает помехоустойчивость всей системы

Подписка на рассылку

В конструкции кабелей для сетей энергораспределения используются различные типы экранирования. Экраны используются для того, чтобы защитить цепи от влияния электромагнитных полей токов, которые проходят по кабелю. Кроме того, они применяются для обеспечения симметрии электрического поля внутри жил самого кабеля. В качестве стандартного материала для экранирования используется медная фольга. Однако для придания изделиям лучших экранирующих свойств используются и другие материалы, которые лучше подходят для целей экранирования.

Электромагнитные помехи и способы борьбы с ними.

Кабели могут выступать как источником, так и приемником электромагнитного излучения. В качестве источника, проводка передает электромагнитные шумы на различное оборудование, непосредственно подсоединенное к ней, или находящееся в непосредственной близости. Кроме того, кабели могут выступать своеобразной антенной, излучающей помехи в окружающее пространство. В качестве приемника электромагнитных помех кабель может улавливать излучение, испускаемое другими кабелями или приборами, находящимися поблизости.

Все электромагнитные шумы принято классифицировать следующим образом:

  • высокие. Распространены на больших производствах и крупных цехах. Источником служат генераторы, мощные двигатели, трансформаторы, индукционные нагреватели, релейные блоки, силовые линии, провода цепей управления;
  • средние. Источником служат провода, которые располагаются рядом с двигателями среднего размера;
  • низкие. От проводов, расположенных сравнительно далеко от силовых линий, при отсутствии в окружении индукционных двигателей, реле, электрических разрядов.

Назначение экранов кабелей заключается в том, чтобы оградить проводку и приборы от этих шумов. В зависимости от силы электромагнитного излучения используются те или иные виды экранирования кабелей.

Используемые материалы экранов кабелей.

Для того чтобы подавить электромагнитные шумы различной интенсивности используются различные типы материалов. Также выбор материала для экранирования зависит и от типа изоляции, применяемой в кабеле. Для экранирования применяют следующие материалы экранов кабелей:

  • полупроводящая бумага;
  • металлизированная бумага;
  • полупроводящая пластмасса;
  • металлическая лента;
  • графитовый слой;
  • медная или алюминиевая фольга;
  • полупроводящий полиэтилен;
  • алюмофлекс (композиционный материал, который состоит из полимерной пленки, которая оклеена алюминиевой фольгой);
  • полупроводящая резина;
  • алюминиевая или медная проволока.

В зависимости от типа изоляции и типа используемого материала, экран может устанавливаться в различных местах. Он может быть наложен поверх поясной изоляции или поверх изоляции жил. Причина, по которой материалы для экранирования и изоляции имеют взаимозависимость, заключается в том, что они должны обладать близкими по своему значению температурными коэффициентами, чтобы свести к минимуму вероятность образования пустот между изоляцией и экранированием при нагреве кабеля.

Варианты наложения материала для экранирования.

Кроме непосредственно самого типа материала имеет значение и тот метод, каким он был уложен. Наиболее распространены следующие виды экранирования:

1. Оплетка (Рис. 2) обеспечивает высокую гибкость кабеля и отлично препятствует низкочастотным помехам.

2. Пленка. Как правило, пленочные экраны изготавливаются из медной или алюминиевой фольги. Такой тип покрытия отличается своей дешевизной и малым весом. Пленочное экранирование хорошо справляется с высокочастотными помехами.

3. Экран типа French Braid. Состоит из 2х встречных многожильных спиралей, состоящих из медных жил.

Сетевые фильтры

Так называемый сетевой фильтр — это зачастую просто разветвитель/удлиннитель, защитные функции у которого либо фактически отсутствуют, либо являются минимальными и способны защитить только от перегрузки или короткого замыкания.

Однако среди «обманок» прячутся и настоящие сетевые фильтры, которые с помощью LC-контура фильтруют высокочастотные помехи в сети. Стоимость таких устройств, естественно, выше, но для некоторых видов техники наличие полноценной фильтрации необходимо. У приборов с LC-контуром есть характеристика «Подавление электромагнитных / радиочастотных шумов»

Если вам нужен такой вариант, обращайте на нее внимание

Как найти место где искрит и почему выбивает дугозащита

Допустим устройство у вас сработало и все отключилось. Как найти место где возникла дуга и появились искры? Если у вас двухэтажный особняк с полсотней розеток, куда бежать в первую очередь и как узнать эту очередность?

Тут вам поможет ваш электрощиток. Чем больше в нем будет групп и автоматов, тем лучше. 

Каждый автомат отвечает за определенную комнату или зону в доме. Отключаете их все скопом, после чего включаете УЗДП.

Далее по одному начинаете включать автоматические выключатели. Причем после включения каждого автомата выжидаете минимум по 10 секунд и только потом переходите к другому.

Имейте в виду, что в цепи должны быть подключены все приборы, которые работали до этого. Кроме того, они должны быть под нагрузкой, а не на холостом ходу. Иначе при токе до 2,5А устройство защиты от дуги может не сработать.

При включении дефектной линии дугозащита должна вновь отключить ее. Тем самым, вы определите проблемную зону или группу. Допустим это кухня. 

Отправляете туда жену, чтобы она наблюдала, а вы тем временем вновь запускаете автомат. Визуально или по звуку можно будет установить место искрения.

А если все равно ничего не видно и не слышно? Тогда действуйте следующим образом. Начните поочередно выключать из розеток все приборы на этой линии.

Если УЗИС все равно срабатывает, то причина в самой проводке, а если нет, то виноват какой-то из отключенных приборов или конкретная розетка.

Включите в эту розетку другой прибор и посмотрите что изменится.

История

Радиолампы, как и другие электронные компоненты, имеют богатую историю, в ходе которой произошла заметная эволюция. Началось все в нулевых годах прошлого века, а закатом ламповой эры можно считать шестидесятые годы, когда свет увидела последняя фундаментальная разработка — миниатюрные радиолампы нувисторы, а транзисторы уже начали активно завоевывать рынок. Но из всей истории нас интересует лишь ключевые этапы, когда были созданы основные типы радиоламп и разработаны основные схемы их включения.

Первый в мире триод изобретателя Ли де Фореста, 1908 год Первой разновидностью радиоламп, разработанной для создания усилителей, были триоды. Цифра 3 слышится в названии не случайно — именно столько активных выводов имеет триод. Принцип работы триода предельно прост. Между анодом и катодом лампы последовательно включаются источник питания и первичная обмотка выходного трансформатора (ко вторичной обмотке которого подключается акустика). Полезный сигнал подается на сетку лампы. При подаче напряжения в схему усилителя между катодом и анодом протекает поток электронов, а расположенная между ними сетка модулирует этот поток соответственно изменениям уровня входящего сигнала.

В ходе использования триодов в различных отраслях промышленности потребовалось улучшить их характеристики. Одной из таких характеристик была проходная емкость, величина которой ограничивала максимальную рабочую частоту лампы. В процессе решения этой проблемы появились тетроды — радиолампы, имеющие внутри не три, а четыре электрода. Четвертым стала экранирующая сетка, установленная между управляющей сеткой и анодом. Задачу повышения рабочей частоты это решало в полной мере, что вполне удовлетворило создателей технологии, разрабатывавших тетроды для того, чтобы радиостанции и радиоприемники работали в коротковолновом диапазоне, имеющим более высокие несущие частоты нежели средне- и длинноволновый.

Строение триода

С точки зрения качества воспроизведения звука тетрод не превзошел триод принципиально, поэтому другая группа ученых, озадаченная вопросами воспроизведения звуковых частот, усовершенствовала тетрод, используя, по сути, тот же подход — просто добавив в конструкцию лампы еще одну дополнительную сетку, располагающуюся между экранирующей сеткой и анодом. Это было необходимо для того, чтобы подавить динатронный эффект — обратную эмиссию электронов от анода к экранирующей сетке. Подключение дополнительной сетки к катоду препятствовало этому процессу, делая выходную характеристику лампы более линейной и повышая выходную мощность. Так появился новый тип ламп: пентод.

Источники бесперебойного питания (ИБП)

ИБП объединяет в себе функции сетевого фильтра и стабилизатора (кроме резервного типа), но помимо этого позволяет технике работать еще какое-то время после отключения электропитания. Бесперебойники бывают трех типов: резервные, интерактивные и с двойным преобразованием.

Резервный вариант — самое простое и дешевое решение. Он пропускает ток через LC-контур, как в хороших сетевых фильтрах, а если необходимое напряжение отсутствует, осуществляется переключение на аккумуляторы. К недостаткам резервных бесперебойников можно отнести задержку при переключении на батареи (5 – 15 миллисекунд).

Интерактивные ИБП оснащены ступенчатым стабилизатором, позволяющим поддерживать надлежащее напряжение на выходе без использования батарей, что увеличивает срок их службы. Такие источники бесперебойного питания годятся для ПК и значительной части бытовой техники.

Бесперебойники с двойным преобразованием преобразуют полученный переменный ток в постоянный, а на выходе подают снова переменный с необходимым напряжением. Аккумуляторные батареи при этом все время подключены к сети, переключение не производится. ИБП данного типа отличаются более высокой стоимостью, в то же время создают больший шум при эксплуатации и сильнее нагреваются. Применяются в основном для требовательного к надежности питания оборудования: серверов, медицинское оборудования.

Защита заголовков не препятствует одиночным включениям заголовка в разные файлы исходного кода.

Обратите внимание, что цель защиты заголовков – предотвратить получение файлом исходного кода более одной копии защищенного заголовка. По замыслу, защита заголовков не препятствует включению данного заголовочного файла (однократно) в отдельные исходные файлы

Это также может вызвать непредвиденные проблемы. Рассмотрим следующую возможность:

square.h:

square.cpp:

main.cpp:

Обратите внимание, что square.h включается как из main.cpp, так и из square.cpp. Это означает, что содержимое square.h будет включено один раз в square.cpp и один раз в main.cpp

Давайте разберемся, почему это происходит более подробно. Когда square.h включается из square.cpp, определяется до конца square.cpp. Это определение предотвращает повторное включение square.h в square.cpp (что является целью защиты заголовков). Однако после завершения square.cpp больше не считается определенным. Это означает, что когда препроцессор начинает работу над main.cpp, в main.cpp изначально не определен.

Конечным результатом является то, что и square.cpp, и main.cpp получают копию определения . Эта программа будет компилироваться, но компоновщик будет жаловаться на то, что ваша программа имеет несколько определений для идентификатора !

Лучший способ обойти эту проблему – просто поместить определение функции в один из файлов .cpp, чтобы заголовок содержал только предварительное объявление:

square.h:

square.cpp:

main.cpp:

Теперь, когда программа скомпилирована, функция будет иметь только одно определение (через square.cpp), так что компоновщик будет счастлив. Файл main.cpp может вызывать эту функцию (даже если она находится в square.cpp), потому что он включает square.h, в котором есть предварительное объявление для этой функции (компоновщик соединит вызов из main.cpp с определение в square.cpp).

Основные виды интерфейсных кабелей

LAN кабель

Интерфейсный кабель UTP (для светодиодных экранов обычно используют разновидность UPT кабеля — Cab Cat. 5), который относится к группе LAN-кабелей, состоит из 4-х витых пар.

Каждая пара — это 2 медных провода (каждый в изоляции) свитых для повышения прочности и уменьшения помех. Каждая пара помещена в изоляционный кожух. 4 таких кожуха с парами попарно перевитых и заизолированных проводов, покрыты общей изоляцией.

UTP кабеля обычно не экранируют. Свойства перевитых проводов устранять помехи, как правило, достаточно, однако для защиты передаваемой информации применяют экранированные кабели. Кабель оснащается разъемом RJ45.

Используют UTP-тип, когда расстояние между управляющим компьютером/ноутбуком и светодиодным экраном не превышает 100 м.

Пропускная способность интерфейсных кабелей Cab Cat. 5 достигает 1000 Мбит/с (до 125 МГц), что соответствует пропускной способности карты видеосигнала.

При пропускной способности сетевой карты 1000 Мбит/с нет смысла брать Cab Cat. 6, который передает до 10 000 Мбит/с.

Он не может увеличить быстродействие системы. Cab Cat. 4 и младше используются для передачи сигналов радиосвязи и телефонии ввиду низкой пропускной способности. Для светодиодных экранов они непригодны.

Если пропускная способность карты видеосигнала будет выше 1000 Мбит/с (125 МГц), необходимо брать кабель с более высокой пропускной способностью (Cat. 6 или Cat. 7), дабы не повредить дорогостоящее оборудование.

Оптоволоконный кабель

Когда расстояние между источником изображения и светодиодным дисплеем более 100 м для качественной передачи сигнала используют оптоволоконный кабель.

Оптоволоконный кабель состоит из:

  • стеклопластикового или металлического несущего торса с полиэтиленовым покрытием;
  • двухслойных пластиковых (маркировка POF) или стеклянных (маркировка GOF) волокон (в ряде случаев покрытых цветным защитным лаком, он же служит для маркировки);
  • пластмассовых трубок (1 и более в кабеле) со световодами (4-12 световодов в трубке); иногда трубки дополнительно заполняют гидрофобным гелем;
  • пленки, пропитанной гидрофобным гелем, которая оплетает трубки; пленка дополнительно стягивается нитками;
  • гибкой, толстой полиэтиленовой оболочки.

В оптоволоконных кабелях дополнительно может присутствовать внутренний полиэтиленовый слой, выполняющий роль дополнительной гидроизоляции, защитный слой (т.н. «броня») из гвоздевого железа, стали, кевларовых нитей, стеклопластика, дополнительный внутренний слой полиэтилена с гидрофобным гелем (усиленная гидрозащита).

Оптоволоконные кабели различаются по месту прокладки на наружные и внутренние. Наружные обладают большей степенью гидрозащиты и, в зависимости от условий окружающей среды, могут оснащаться защитой от удара молниями, контакта с окружающей средой и усиленной защитой от механических повреждений (броней, кабельной канализацией и пр.).

Реле напряжения

Реле напряжения, также называемые реле-прерывателями, производят размыкание электрических цепей при перепадах напряжения. После отключения питания реле через небольшие временные интервалы проверяет состояние напряжения, и при нормальных значениях возобновляет подачу тока.

Некоторые модели оснащения регуляторами, позволяющие настраивать реле под разные приборы, устанавливая верхний и нижний предел перепадов для отключения, а также время последующей активации. Существуют модели реле-прерывателей как для монтирования в электрощиток, так и для отдельной установки в розетку.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Работатека
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: