Виды космических скоростей и чему они равны

Сколько существует космических скоростей?

Сила гравитации Земли и нашего Солнца несоизмеримы. Поэтому скорости, с которой возможно вылететь на орбиту планеты и покинуть звездную систему, разные.

Астродинамика выделяет 5 типов космических скоростей:

  • Первая (орбитальная, круговая) – позволяет покинуть планету, но объект будет двигаться по ее круговой орбите как спутник;
  • Вторая (параболическая) – позволяет вырваться в звездную систему, преодолев гравитацию планеты, объект движется по параболической орбите;
  • Третья (гиперболическая) – позволяет покинуть систему, преодолев гравитацию планеты и звезды;
  • Четвертая – объект покидает галактику;
  • Пятая – позволяет долететь по планеты другой звёздной системы, независимо от расположения планет в галактике.

Первая космическая скорость позволяет преодолеть силу притяжения планеты. Если аппарат будет лететь с меньшей скоростью, рано или поздно он упадет. Это минимальная скорость, которую должны развивать ракеты, при выходе на орбиту. При этом взлетают они вертикально только первые 100 км. Затем ракета наклоняется и летит практически горизонтально планете. И только преодолевая высоту 150–200 км, она набирает космическую скорость.Получается, что ракета летит по круговой траектории. Поэтому второе название первой космической скорости – круговая или орбитальная. Для Земли она составляет 7900 м/с.

Орбитальная станция

При второй космической скорости объект будет двигаться по параболической траектории, т.к. сила тяготения звезды продолжает действовать, и он становится уже ее спутником. Для Земли и Солнца минимальный порог составляет 11200 м/с. Впервые эту скорость развил советский аппарат “Луна-1”. Вторую космическую еще называют скоростью ускорения, т.к. объекту необходимо преодолеть максимальный порог первой скорости, иначе он не сможет покинуть орбиту планеты. При этом траектория движения аппарата будет иметь эллиптическую орбиту разной степени вытянутости, как у комет.

На третьей космической скорости, чтобы обойти гравитацию звезды, аппарат должен двигаться по гиперболической траектории. Для Земли она составляет 46900 м/с. Впервые ее достиг аппарат “Новые горизонты” (НАСА, США) в 2006 г., добавив недостающие 4 км/м . В 2015 г. достиг Плутона. На 2021 г. аппарат удалился от Солнца на 50 астрономических единиц и продолжает исследовать глубокий космос.

Четвертая космическая скорость позволяет покинуть галактику. На текущий момент вычислить скорость для Млечного пути не представляется возможным, т.к. невозможно рассчитать его гравитационный потенциал. Эта величина не постоянная для всех точек галактики и зависит от места их расположения, в том числе и на определенный момент времени

Важно отметить, что нужны данные и по расположению масс второй галактики, куда будет осуществлен полет. Но ученые предполагают, что значение четвертой космической около 550 000 м/с.

Галактика Андромеды

Пятая космическая скорость упоминается реже, т.к

межгалактические планетарные полеты пока не доступны. Но если рассмотреть космическую скорость, которую летательный аппарат должен развить с нашей планеты до другой с вертикальной траекторией, то внутри солнечной системы она примерно составит 43600 м/с.

Вторая космическая скорость

Определение 2

Обладая скоростью $v_{1} $, тело не упадет на Землю. Однако этой скорости недостаточно для того, чтобы тело могло выйти из сферы земного притяжения, т. е. удалиться от Земли на такое расстояние, что притяжение к Земле перестает играть существенную роль. Необходимая для этого скорость $v_{x} $ называется второй космической скоростью.

Для того чтобы найти вторую космическую скорость, нужно вычислить работу, которую необходимо совершить против сил земного притяжения для удаления тела с поверхности Земли на бесконечность. При удалении тела силы земного притяжения совершают над ним работу:

Начальное значение равно:

Конечное значение есть нуль. Таким образом:

Работа $A$, которую нужно совершить против сил земного притяжения, равна работе $A’$, взятой с обратным знаком, т. е.:

Пренебрегая различием между силой тяжести $mg$ и силой гравитационного притяжения тела к Земле, можно написать, что:

Отсюда:

Следовательно, работу можно представить в виде:

Эту работу удаляющееся тело совершает за счет запаса своей кинетической энергии. Чтобы запас энергии оказался достаточным для совершения работы, тело должно быть запущено со скоростью, не меньшей, чем скорость $v_{1} $, определяемая условием:

Отсюда:

Скорость $v_{2} $ и есть вторая космическая скорость. Из сравнения видно, что вторая космическая скорость в $\sqrt{2} $ раз больше первой. Умножив $8$ км/с на $\sqrt{2} $, получим для $v_{2} $ значение, приблизительно равное $11$ км/с.

Замечание 1

Отметим, что необходимая величина скорости не зависит от направления, в котором осуществляется запуск тела с Земли. От этого направления зависит лишь вид траектории, по которой тело удаляется от Земли.

Что мы знаем о космических скоростях?

Если подбросить предмет вверх, через некоторый промежуток времени он упадет на поверхность. Это действие силы притяжения планеты. Все крупные космические тела имеют гравитационную силу и притягивают друг друга. Именно поэтому люди не “падают” и не улетают в космическое пространство, Луна не отдаляется от Земли, возникают приливы и отливы, а планета вращается .


Луна вращается вокруг Земли

Соответственно, чтобы покинуть планету или звездную систему, требуется развить такую скорость, чтобы преодолеть действующую силу притяжения

Важно отметить, что для каждой планеты свои значения космической скорости. На расчет влияет масса планеты, ее радиус и значение ускорения свободного падения (G)

Что такое космическая скорость

Космическими скоростями в космонавтике (речь идет не только о пилотируемых полетах, но для удобства мы будем называть все запуски искусственных космических аппаратов космонавтикой) пользуются для расчета минимально необходимой скорости для:

1. Выхода космических аппаратов на орбиту Земли;
2. Выхода космических аппаратов за пределы гравитационного поля Земли;
3. Выхода космических аппаратов за пределы Солнечной системы;
4. Выхода космических аппаратов за пределы галактики Млечный Путь.

Естественно, формулы расчета космических скоростей применимы не только к нашей планете, но и к любому другому объекту Вселенной, однако мы рассмотрим лишь актуальные для земных космических аппаратов значения.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Работатека
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: