Теоретические предпосылки для оценки показателей надежности устройства передачи сигналов с использованием программируемых логических интегральных схем в составе волоконно-оптических систем связи

«Распределенный интеллект»

Идеальным решением было бы появление систем с действительно распределенным интеллектом.

Подразумевается, что в такой системе контроллеры способны общаться между собой без помощи центрального контроллера или программного обеспечения. В этой системе можно резервировать отдельные ее узлы и определенные заранее линии связи. Выход из строя отдельного (любого) элемента не приведет к глобальным последствиям, вызванным тем, что система потеряет возможность выполнять свои функции. К сожалению, несмотря на заявления некоторых производителей, реально работающие СКУД такого типа на нашем рынке не представлены.

9.3. Особенности функционирования протоколов передачи данных в рамках модели OSI

Модель OSI представляет хотя и очень важную, но только одну из многих моделей коммуникаций. Эти модели и связанные с ними стеки протоколов могут отличаться количеством уровней, их функциями, форматами сообщений, службами, поддерживаемыми на верхних уровнях, и прочими параметрами. Соответствие популярных стеков протоколов модели OSI показано в таблице 9.1.

Модель OSI описывает концепцию организации информационной связи компьютеров, но не конкретный способ обмена данными. Реальная последовательность действий компьютеров определяется используемыми протоколами обмена. В рассматриваемом контексте протокол определяется как набор правил и соглашений, предписывающих компьютерам последовательность действий для осуществления обмена через среду передачи данных.

Таблица 9.1 — Соответствие популярных стеков протоколов модели OSI

Уровень модели OSI

Стек протоколов

IBM/Microsoft

TCP/IP

Novell

OSI

Прикладной

SMB

Telnet, FTP, TFTP, SNMP, SMTP, WWW

NCP, SAP

X.400, X.500, FTAM

Представительный

Протокол представления OSI

Сеансовый

NetBIOS

TCP, UDP

Сеансовый протокол OSI

Транспортный

SPX

Транспортный протокол OSI

Сетевой

 

IP, RIP, OSPF, BGP, IGRP

IPX, RIP, NLSP

ES-ES, IS-IS

Канальный

Ethernet, Token Ring, FDDI, Fast Ethernet, SLIP, l00VG-AnyLAN, X.25, ATM, LAP-B, LAP-D, PРР

Физический

Медный кабель, оптическое волокно, радиолиния

Существует довольно большое разнообразие протоколов обмена – протоколы локальных и глобальных сетей, межсетевого взаимодействия, маршрутизации. Протоколы локальных сетей выполняют функции физического и канального уровня. Протоколы глобальных сетей работают на трех низших уровнях модели. Протоколы межсетевого взаимодействия, как очевидно из названия, являются протоколами сетевого уровня. И, наконец, протоколы маршрутизации также являются протоколами сетевого уровня, поскольку отвечают за обмен информацией между маршрутизаторами, выбирающими сетевой маршрут.

Соответствие протоколов уровням модели OSI приведено в таблице 9.3.

Многие протоколы при выполнении своих функций основываются на результатах работы других протоколов. Например, протоколы маршрутизации используют протоколы межсетевого взаимодействия для обмена данными между маршрутизаторами. Концепция построения протоколов, опирающихся на другие существующие протоколы, является фундаментальной для OSI модели и служит основой создания стеков взаимодействующих протоколов. Пример стека протоколов TCP/IP можно посмотреть на рисунке 9.10.

Глава 9 основана на материале работы .

Таблица 9.2 — Соответствие протоколов уровням модели OSI

Уровень OSI

Протоколы

Прикладной

HTTP, gopher, Telnet, DNS, DHCP, SMTP, SNMP, CMIP, FTP, TFTP, SSH, IRC, AIM, NFS, NNTP, NTP, SNTP, XMPP, FTAM, APPC, X.400, X.500, AFP, LDAP, SIP, ITMS, Modbus TCP, BACnet IP, IMAP, POP3, SMB, MFTP, BitTorrent, eD2k, PROFIBUS, NCP.

Представи-тельный

XML-RPC, TDI, XDR, SNMP, Telnet, NCP, AFP, ICA

Сеансовый

ASP, ADSP, DLC, Named Pipes, NBT, NetBIOS, NWLink, Printer Access Protocol, Zone Information Protocol, SSL, TLS, RPC.

Транспорт-ный

TCP, UDP, SOCKS, NetBEUI, AEP, ATP, IL, NBP, RTMP, SMB, SPX, SCTP, DCCP, RTP, TFTP.

Сетевой

IP, IPv6, ICMP, IGMP, IPX, NWLink, NetBEUI, DDP, IPSec, RARP, BOOTP, SKIP, RIP, GRE.

Канальный

STP, ARCnet, ATM, DTM, SLIP, SMDS, Ethernet, FDDI, Frame Relay, LocalTalk, Token ring, StarLan, L2F, L2TP, PPTP, PPP, PPPoE, PROFIBUS, CSMA/CD, CSMA/CA, ARP.

Физический

RS-232, RS-422, RS-423, RS-449, RS-485, xDSL, ISDN (T1, E1), Ethernet (10BASE-T, 10BASE2, 10BASE5), Fast Ethernet (100BASE-T, 100BASE-TX, 100BASE-T4, 100BASE-FX), Gigabit Ethernet (1000BASE-T, 1000BASE-TX, 1000BASE-SX).

Рисунок 9.10 — Взаимосвязь отдельных протоколов внутри TCP/IP

4.1. Выбор типа, марки оптического кабеля и метода его прокладки

Выбор типа оптического кабеля производится на стадии разработки технико-экономических обоснований или рабочего проекта в процессе определения и обоснования мощности проектируемой магистральной или внутризоновой ВОЛП. Например, при проектировании внутризоновой сети кольцевых структур приходится выбирать метод прокладки оптического кабеля: непосредственно в грунт при помощи кабелеукладчика или пневмозадувкой в предварительно проложенную в грунт пластмассовую трубку. Сегодня в условиях России метод пневмозадувки получает все большее применение в регионах с достаточно высоким уровнем потребления услуг связи. Важным преимуществом этого метода является простое и быстрое наращивание оптических волокон путем докладки (дозадувки) второго кабеля или заменой кабеля на более совершенный. В малонаселенных регионах, с относительно небольшим потреблением услуг связи предпочтение отдается прокладке ОК с круглопроволочной броней непосредственно в грунт. Здесь необходимо закладывать значительное количество оптических волокон на перспективу. На участках сетей связи, где требуется большая пропускная способность целесообразно применить новую технологию прокладки ОК. По этой технологии (технология микротрубки) в защитную пластмассовую трубку (ЗПТ) вместе с ОК задуваются пластмассовые микротрубки, в которые, в свою очередь, задуваются легкие малогабаритные оптические кабели (микрокабели) .

Следует подчеркнуть, что при прокладке ОК и ЗПТ в грунт следует предусматривать использование кабелеукладочной техники. При этом перед прокладкой кабеля необходимо выполнять предварительную пропорку грунта.

Емкость ОК (количество одномодовых оптических волокон) и тип оптических волокон определяется исходя из принятой в проекте системы передачи, с учетом развития сети связи в ближайшее время и на более удаленную перспективу. Согласно рекомендациям ОАО «Связьинвест» на магистральных и внутризоновых ВОЛП, особенно в регионах с интенсивно развивающейся экономикой, целесообразно использовать ОК, содержащие как стандартные ОВ, так и ОВ с ненулевой смещенной дисперсией.

При выборе числа ОВ в кабеле следует следить за их стоимостью, которая может претерпевать значительные изменения. Например, в последние годы стоимость ОВ заметно уменьшилась и в 2004…2005 годах разница в стоимости 8-волоконного и 16-волоконного ОК весьма мала и составляет около 5 тыс. руб.

Выбор марок ОК производится на основании технологических и инженерных изысканий трассы ВОЛП и определенных в процессе изысканий данных её характеристики по условиям прокладки кабеля (рельеф местности, наличие водных преград и болот, геологическая структура грунтов и их механическое воздействие на кабель), необходимости защиты кабеля от ударов молнии и источников внешнего электромагнитного влияния (интенсивность грозодеятельности, наличие сближений с ЛЭП и электрифицированными железными дорогами переменного тока).

Например: при прокладке ОК непосредственно в грунт рекомендуется прокладывать кабель с однослойной круглопроволочной броней марки ОКЛК (маркировка ОК производства ЗАО «Самарская кабельная компания» наилучшим образом приближена к общепринятой маркировке электрических медножильных кабелей связи); для прокладки в отдельных каналах кабельной канализации – кабель марки ОКЛСт; для прокладки в грунт в районах вечной мерзлоты и для пересечений больших водных преград целесообразно использовать кабель с двухслойной круглопроволочной броней с допустимыми растягивающими нагрузками до 80 кН; для прокладки методом пневмозадувки используется специально выпускаемый для этой цели облегченный кабель марки ОКЛ.

Для подвески на опорах контактной сети железных дорог и городского электрохозяйства применяются самонесущие ОК без металлических элементов, например ОКЛЖ. На ЛЭП подвешиваются ОК, встроенные в грозотрос, например ОКГТ.

Следует подчеркнуть, что выбор ОК для строительства ВОЛП является очень ответственной задачей. Целесообразно отдавать предпочтение тем отечественным производителям оптических кабелей, которые хорошо зарекомендовали себя на рынке, продукция которых имеет соответствующую документацию по системе качества как на отечественном, так и на зарубежном уровнях.

Резервирование

Общими для разных систем мерами обеспечения требуемой надежности является резервирование недостаточно надежных элементов, то есть их дублирование и функциональная избыточность.

В СКУД, конечно, можно организовать «горячее» резервирование центральных контроллеров и линий связи. Однако данное решение, во-первых, ведет к удорожанию системы, во-вторых, существенно повышает ее сложность, что в свою очередь опять-таки отрицательно влияет на надежность.

Получается своеобразный замкнутый круг. (Следует заметить: грамотное решение по резервированию линий связи — с учетом того, что применяемые в системе интерфейсы могут быть самыми разнообразными, — это тема для отдельной статьи по СКС.)

Архитектура системы

В настоящее время считается наиболее надежным построение по принципу смешанной архитектуры. Она представляет собой слияние более ранних вариантов систем с централизованной и распределенной архитектурой. Напомним, что в централизованной архитектуре имеется один основной контроллер управления, а все периферийное оборудование подключается через неинтеллектуальные интерфейсные модули. В распределенной архитектуре — много мелких интеллектуальных контроллеров, к которым непосредственно подключается периферийное оборудование, при этом координация работы системы в целом (например, глобальный контроль повторного прохода, организация различных реакций на события) возложена на программное обеспечение. Переход на «смешанную» архитектуру осуществлен производителями путем замены «тупых» интерфейсных модулей на аналог мелких интеллектуальных контроллеров или за счет добавления в систему центральных «сетевых».

Замысел понятен. Нововведения вроде бы должны повысить надежность, однако попробуем разобраться, насколько удачным оказалось такое решение. При выходе из строя центрального контроллера либо при нарушении связи с ним система переходит в режим функционирования, отличающегося очень ограниченными возможностями. С одной стороны, обе архитектуры повысили свою надежность, но, с другой стороны, у них при этом остались прежние недостатки.

Так что же лучше – оптика или медная витая пара

Нынче любой крупный и даже средний интернет-провайдер использует в ряде сегментов своих сетей оптоволокно. И наоборот: как бы провайдер не заманивал подключением к «самой быстрой системе нового поколения», отдельные участки его сетей – традиционный медный кабель. Просто правила им диктуют условия среды (где-то они больше подходят для меди, а где-то – для оптики) и экономическая целесообразность, а маркетинг – есть маркетинг.

К какому виду магистрали подключили ваш дом провайдеры «Медный всадник» и «Оптическая иллюзия», точно не скажет никто, поэтому будем считать, что их предложения различаются только способом подключения абонентов внутри квартир.

В таблице ниже сопоставлены свойства волоконной оптики и витой пары:

Оптоволокно Медная витая пара
Теоретически достижимая скорость связи OS1 – 40 Гбит/с

OS2– 100 Гбит/с

OM3 и ОМ4 – 100 Гбит/с

До 10 Гбит/с для кабелей категории 6 и 7.
Максимальная длина неразрывной линии OS1 – 100 км

OS2 – 40 км

ОМ3 – 300 м

ОМ4 – 125 м.

100 м
Физические свойства кабеля Тонкий, хрупкий Толстый, гибкий
Подверженность внешним воздействиям Чрезмерные изгибы, давление, некоторые виды излучений Электромагнитные помехи, атмосферное электричество, агрессивные химические среды, огонь, несанкционированное подключение для считывания данных
Совместимость с клиентским оборудованием Требует покупки специальных адаптеров Совместима с любыми устройствами, оснащенными гнездами RJ-45
Обслуживание Требует спецоборудования и профессиональной подготовки Требует минимальных навыков и знаний
Стоимость Высокая Низкая

Подведем итоги:

  • Оптоволоконная линия до 10-и раз быстрее и гораздо «дальнобойнее», чем витая пара, она не подвержена влиянию наводок электрического оборудования и силовых линий, долговечна и прочна, не горит, не теряет свойств от влаги, кислот и щелочей. Не допускает шпионских врезок и прослушивания путем индукционного подключения.
  • Волоконно-оптическую сеть легче замаскировать в интерьере, для нее не нужно монтировать широкие неэстетичные кабель-каналы.
  • Волоконная оптика – это хоть и гибкое, но стекло, а любое стекло может трескаться и крошиться. Поэтому монтаж и модернизация такой сети требует большой аккуратности. Если поврежденную витую пару можно разрезать и соединить простой скруткой, то для восстановления разорванной оптики нужен специальный сварочный аппарат и умение с ним обращаться. А иногда даже небольшое повреждение волоконно-оптической линии требует полной ее замены.
  • Главное преимущество витой пары – дешевизна и простота в обиходе. За подключение к Интернету посредством медного кабеля с вас, скорее всего, не возьмут никаких дополнительных денег, а за оптику придется заплатить, ведь она дорогая. Витую пару с универсальным коннектором можно сразу воткнуть в компьютер – и на нем появится Интернет. Для оптики снова придется раскошелиться на специальную розетку, модем (ONT-терминал или роутер), сетевые адаптеры. А это тоже недешево.

Чисто оптоволоконные сети внутри домов и квартир пока большая редкость, чаще всего их делают гибридными – частично оптическими, частично меднопроводными, частично беспроводными. Оптику обычно подводят только к модему, а конечные устройства – компьютеры, смартфоны, смарт ТВ и т. д. получают Интернет всё по той же витой паре или Wi-Fi, ведь они не оборудованием модулями декодирования светового сигнала. Значит, какие бы сверхскорости ни обещал вам провайдер, медленные сегменты сети сведут ее на нет.

Итак, ваш выбор «Медный всадник», если:

  • Вы не хотите переплачивать за то, чего, скорее всего, не получите. Если ваши устройства – потребители Интернет-трафика работают на устаревших протоколах Ethernet или Wi-Fi, то оптика не сделает их быстрее.
  • Вы часто переносите компьютер с места на место, у вас есть собака, которая любит жевать провода или маленькие дети, хватающие всё подряд. И в случае повреждения кабеля вам проще починить его своими руками, чем платить мастеру.

Вам лучше стать клиентом «Оптической иллюзии», если:

  • Вы за всё новое против всего старого. Волоконная оптика – это технология будущего, а значит, достойна инвестиций. И пусть она дружит не с каждым девайсом – скоро, надо ожидать, производители последних возьмутся за ум и оборудуют свои продукты поддержкой оптоволокна. Ведь потребители этого хотят и готовы вкладываться.
  • Финансы для вас – не проблема. У вас современная техника, которая поддерживает последние протоколы проводной и беспроводной связи, и вы готовы заставить ее «взять максимальную высоту».
  • Вам нужна скорость, и этим все сказано.
  • Безопасность сети в плане возможной утечки данных – ваше всё.

1.3. Уровни иерархии SDH

Уровни SDH определяют структуру цикла и скорость передачи группового сигнала на интерфейсе сетевого узла (Network Node Interface; NNI). На данный момент SDH имеет шесть уровней со скоростями передачи, соответствующими синхронным транспортным модулям STM-N. Уровни иерархии и соответствующие им скорости приведены в таблице 1.2

Таблица 1.2 — Уровни иерархии SDH

Уровни иерархии Скорость цифрового потока, Мбит/с
STM-0 51,840
STM-1 155,520
STM-4 622,080
STM-16 2448,320
STM-64 9953,280
STM-256 39813,120

Базовым уровнем является STM-1 со скоростью обмена 155,52 Мбит/с. Более высокие иерархические уровни имеют скорость передачи, кратную скорости первого уровня. В отличие от PDH, SDH определяется шагами по 4, а не «почти» по 4.

Скорость передачи более высокого уровня определяется с помощью выражения 1.4.

, (1.4)

где =155,520 Мбит/с – скорость цифрового потока STM-1;

=4,16,64,256 – уровень иерархии

Кроме того, в данную иерархию включен нулевой уровень STM-0, соответствующий сигналу STS-1 прототипа SDH американской системы SONET. Учитывая скорость, строение цикла и другие технические детали, логичнее было бы назвать этот уровень «1/3», однако исторически утвердилось название STM-0. Введение этого сетевого уровня облегчает использование SDH в ряде областей (радиолинии, спутниковая связь, сети доступа), а также для систем SDH малой и средней емкости.

Широкое применение имеют и другие уровни SDH. На данном этапе SDH занимает ведущее место в транспортных сетях. С введением уровня STM-256 со скоростью передачи около 40 Гбит/с, можно образовать тракт, вмещающий почти полмиллиона каналов 64 кБит/с. Используя разработанную аппаратуру SDH класса DWDM (Dense Wavelength Division Multiplexing – тесное волновое уплотнение) по которой передаются сигналы STM-16/64/256, создаются магистрали огромной пропускной способности. На городских и пригородных (местных) сетях, где можно использовать дешевые и легко адаптируемые к условиям применения системы STM-0/1/4, SDH все сильнее вытесняют PDH. Кроме того, SDH активно осваивает оптические сети доступа – между абонентом и первой АТС.

Рисунок 1.2. Пример первичной сети, построенной на технологии SDH

На рисунке 1.2 приведен пример использования уровней в сети SDH. Данный пример включает первичную сеть SDH, включающую кольца магистральной сети, построенной на потоках STM-16, местных сетей, построенных на потоках STM-4, и локальных сетей (ЛС) с потоками STM-1.

Выводы по подразделу

Синхронное мультиплексирование определяется шестью уровнями. Базовым уровнем является STM-1, каждый последующий уровень имеет скорость в 4 раза большую, чем предыдущий. Кроме того, стандартизирован нулевой уровень STM-0.

Системы SDH различных уровней иерархии получили широкое применение и используются как на транспортных сетях, так и на сетях доступа.

Список литературы

1. Телекоммуникационные системы и сети: Учебник / Под ред. В.П. Шувалова. – М.: Горячая линия – Телеком, 2003. – Т.1 – 647 с.

2. Телекоммуникационные системы и сети: Учебник /Г.П. Катунин, Г.В. Мамчев, В.Н. Попантонопуло; Под ред. В.П. Шувалова. – Н.: ЦЭРИС, 2000. – Т.2. – 623 с.

3. Уайндер С. Справочник по технологиям и средствам связи // Пер. с англ. О.М. Сувина, Н.И. Баяндина. – М,: Мир, 2000. – 429 с.

4. Прокис Дж. Цифровая связь; Пер. с англ. / Под ред. Д.Д. Кловского. – М.: Радио и связь, 2000. – 800 с.

5. Многоканальные системы передачи: Учебник для студентов ВУЗов связи / Под ред. Н.Н.Баевой, В.Н. Гордиенко. – М.: Радио и связь, 1997. – 560 с.

6. Цифровые и аналоговые системы передачи: Учебник для студентов ВУЗов / Под ред. В.И.Иванова. – М.: Радио и связь, 1995. – 232 с.

7. Шмалько А.В. Цифровые сети связи: основы планирования и построения. М.: Эко-тренз, 2001. – 282 с.

8. Макаров А.А., Чернецкий Г.А. Корректирующие коды в системах передачи информации: Учебное пособие / СибГУТИ. – Новосибирск, 2000. – 101 с.

9. Фокин В.Г. Оптические системы передачи: Методические указания. – Н.: СибГУТИ, 2001. – 38 с.

10. Заславский К.Е. Волоконно-оптические системы передачи: Методические указания. –Н.: СибГУТИ, 2002. – 136 с.

11. Фокин В.Г. Аппаратура и сети доступа: Методические указания по курсу Т2203 – Н.: СибГУТИ, 1999. – 114 с.

12. Фокин В.Г. Основные принципы АТМ: Методические указания по курсу Т2204. – Н.: СибГУТИ, 1999.

13. Битнер В.И. Принципы коммутации и доставки информации в Ш-ЦСИС: Учебное пособие. – Н.: СибГУТИ, 2001. – 91 с.

14. Введение в технологию АТМ / М. Буассо, М. Деманж, Ж.-М. Мюнье; Пер с англ. В.Н. Стародобцева; Под ред. В.О. Шварцмана. – М.: Радио и связь, 1997. – 128 с.

15. Битнер В.И. Управление сетью электросвязи: Учебное пособие / СибГУТИ. – 2001. – 78 с.

16. Ю.П. Быков, Н.И. Голоборщев, Т.И. Ромашова. Теория телетрафика: Учебное пособие. – Н.: СибГУТИ, 2002. – 49 с.

17. Корнышев Ю.Н. Пшеничников А.П., Харкевич А.Д. Теория телетрафика: Учебник – М,: Радио и связь, 1996. – 270 с.

18. Фокин В.Г. Управление телекоммуникационными сетями: Учебное пособие. – Н.: СибГУТИ, 2001. – 112 с.

19. Попов Г.Н., Кулеша О.П. Расчёт и измерения качественных показателей транспортной сети: Учебное пособие. – Н.: СибГУТИ, 2002. – 103 с.

20. Концепция развития рынка телекоммуникационных услуг Российской Федерации // СвязьИнформ. – 2001. – № 10. – с. 9 – 32.

21. Фокин В.Г. Аппаратура систем синхронной цифровой иерархии: Методические указания. Межригиональный учебный центр переподготовки специалистов. – 2-е изд., испр. и доп. – Н.: СибГУТИ, 2001. – 60 с.

22. Махровский О.В., Мартин Ю.Н., Охорзин В.М. и др. Построение региональных информационных систем на основе интеллектуальных сетей // Электросвязь. – 1995. – №5.

23. Бакалов В.П., Журавлёва О.Б., Крук Б.И. Анализ линейных электрических цепей: Учебное пособие для дистанционного обучения. – Н.: СибГУТИ, 2001.

24. Ромашова Т.И. Принципы цифровой коммутации: Учебное пособие. Н.: СибГУТИ, 2000. – 31 с

25. Шварцман В.О. Передача данных: функциональные блоки, компоненты, их взаимодействие, интерфейсы // Вест. Связи. – 1996. – № 9.

26. Альтергот А.В., Панфилов Д.И., Шаронин С.Г. Факсимильная связь на базе компьютерной телефонии // Сети. – 1997. – № 1. – С. 58 – 64.

27. Передача дискретных сообщений / В.П. Шувалов, Н.В. Захарченко, В.О. Шварцман и др.; Под ред. В.П. Шувалова. Учеб. Для вузов. – М.: Радио и связь, 1990. – 464 с.

28. Битнер В.И. Общеканальная система сигнализации №7: Метод. указ. по курсу Т2104. – Н.: СибГУТИ – 65 с.

Управление технологическими процессами

В автоматизированных промышленных системах контроллеры получают сигналы управления от компьютера, который может быть удален на некоторое расстояние. Линии связи, по которым передаются эти сигналы, часто располагаются вдоль линий питания и вблизи технологических установок. Чтобы исключить влияние помех на передаваемые сигналы, применяется оптическое волокно. Так, при помощи оптоволокна можно организовать связь между компьютером и программируемым логическим контроллером (ПЛК), а также связь между несколькими ПЛК, объединенными в общую информационную сеть.

Другим примером является управление промышленными роботами, в конструкцию которых входят электродвигатели, соленоиды и прочие элементы, создающие электромагнитные помехи. Относительная гибкость оптического волокна позволяет также использовать его для связи между движущимися частями робота.

13.7. Оптимизация способов повышения надежности ВОЛП

Для получения необходимых показателей надежности ВОЛП можно использовать широкий спектр мероприятий, однако при этом часто не учитывается экономический фактор.

Для учета эффективности мероприятий, повышающих надежность работы ВОЛП следует проводить оценку качества функционирования всей системы связи.

С течением времени ВОЛП претерпевает изменение своих состояний из-за старения входящих в ее состав элементов (отказы муфт, ОВ, ОК в целом). Каждая реализация процесса перехода ВОЛП из состояния нормы в состояние неисправности может быть охарактеризована вполне определенным условным показателем эффективности функционирования. Этим показателем может быть, например, объем пропускаемой информации за единицу времени. Так при обрыве одного ОВ снизится количество пропускаемой информации, хотя и не наступит полного прекращения работы ВОЛП. Кроме необходимости определения таких параметров, как время наработки на отказ, время восстановления, коэффициент готовности становится желательным знать такие параметры ВОЛП, как показатель эффективности функционирования линии и связанные с ним экономические показатели ВОЛП при возникновении повреждений.

В процессе эксплуатации под воздействием различных факторов происходит изменение параметров ВОЛП, возникают обрывы, повреждения оболочек ОК, оптические волокна обламываются из-за остаточной усталостной коррозии, увеличиваются потери на стыках ОВ в муфтах и.т.д. ВОЛП из состояния, характеризующегося номинальными значениями основных параметров (затухание, дисперсия), переходят в процесс эксплуатации с худшими качественными характеристиками, в результате чего снижается пропускная способность, возрастает количество ошибочно переданных символов в информации. В итоге возникает необходимость ремонта ВОЛП. Это связано с вполне определенными затратами. Затраты также появляются из-за необходимости проведения профилактических работ по замене или контролю качества отдельных элементов ВОЛП. Кроме того, повреждения и отказы часто носят скрытый характер, так что для их выявления требуются сложные и дорогостоящие технологии (например Бриллюэновсая рефлектометрия), что опять приводит к дополнительным затратам.

Перед специалистами возникает вопрос: либо продолжать эксплуатировать ВОЛП, если эффективность ее функционирования снизилась до предельно допустимого уровня (или возникло подозрение, что подобное снижение могло произойти), либо проводить специальные мероприятия по повышению надежности.

В большинстве случаев существует возможность разработать модель проведения профилактических мероприятий, которая позволит свести к минимуму суммарные потери, учитывающие затраты на профилактику и потери в результате ухудшения эффективности функционирования системы.

Устройства управляющие

Самыми сложными элементами в СКУД являются устройства управляющие (УУ), которые соответственно представляют собой и наименее надежные узлы данной системы.

Начнем рассмотрение с аппаратных УУ. Это различные контроллеры и интерфейсные модули На самом деле сюда можно отнести и компьютерное оборудование, на котором установлены программные УУ. При выходе аппаратных УУ из строя — а для больших (распределенных) систем при потере связи между ними — СКУД практически полностью перестает функционировать. Данный факт указывает на то, что во многом работоспособность определяется архитектурой системы.

Преимущества и недостатки оптического волокна

Хотя оптическое волокно имеет преимущества в скорости и пропускной способности по сравнению с медным кабелем, стоит учитывать, что у него также есть и определенные недостатки. Вот преимущества и недостатки оптического волокна.

Преимущества оптического волокна

Большая пропускная способность & более высокая скорость—оптоволоконный кабель поддерживает чрезвычайно высокую пропускную способность и скорость. Большое количество информации, которое может быть передано на единицу оптоволоконного кабеля, является его наиболее значительным преимуществом.

Дешевка—длинные, непрерывные мили оптоволоконного кабеля могут быть сделаны дешевле, чем эквивалентные длины медного провода. С многочисленными поставщиками, борющимися за долю рынка, цена оптического кабеля обязательно упадет.

Тоньше и легче—оптическое волокно тоньше, и его можно вытянуть на меньшие диаметры, чем медный провод. Они имеют меньший размер и легкий вес, чем сопоставимый медный кабель, поэтому лучше подходят для мест, где требуется пространство.

Более высокая пропускная способность—поскольку оптические волокна намного тоньше, чем медные провода, больше волокон могут быть объединены в кабеле заданного диаметра. Это позволяет больше телефонных линий переходить по одному и тому же кабелю или большему каналу, проходящему через кабель в вашу кабельную телевизионную коробку.

Меньшая деградация сигнала—потеря сигнала в оптическом волокне меньше, чем в медном проводе.

Световые сигналы—в отличие от электрических сигналов, передаваемых по медным проводам, световые сигналы от одного волокна не влияют на сигналы других волокон в том же оптоволоконном кабеле. Это означает более четкие телефонные разговоры или прием на телевидении.

Долгий срок службы—оптические волокна обычно имеют более длительный жизненный цикл более 100 лет.

Недостатки оптического волокна

Низкая мощность—светоизлучающие источники ограничены низкой мощностью. Хотя излучатели высокой мощности доступны для улучшения энергопотребления, это добавит дополнительную стоимость.

Хрупкость—оптическое волокно довольно хрупкое и более уязвимо к повреждениям по сравнению с медными проводами. Лучше не скручивать и не сгибать оптоволоконные кабели слишком сильно.

Расстояние—расстояние между передатчиком и приемником должно быть коротким, или повторители необходимы для усиления сигнала.

Системы сбора данных и измерительные системы

Большое значение на производстве также играют контрольно-измерительные системы. Зачастую необходимо проводить мониторинг различных параметров высоковольтного оборудования. Обработка полученных данных при этом осуществляется при помощи низковольтной микропроцессорной техники. Поэтому для передачи сигналов необходима надежная гальваническая развязка, которая достигается при использовании оптического волокна.

В автоматизированных контрольно-измерительных системах также широко используется интерфейсная шина GPIB (IEEE-488). При помощи оптоволокна можно увеличить расстояние между измерительным прибором и компьютером, обрабатывающим информацию. При этом обеспечивается гальваническая развязка и защита от электромагнитных помех, что критично с точки зрения точности измерений.

13.5. Требования к показателям надежности ЛКС ВОЛП

Требования к показателям надежности ЛКС ВОЛП следует формировать на основе следующих принципов:

  • показатель надежностисрок службы должен быть существенно больше срока окупаемости данной линии передачи и, как правило, не менее 25 лет;
  • на участках линии с различными условиями должны применяться разные марки кабеля, соответствующие географическим, геологическим и климатическим особенностям трассы с тем, чтобы готовность однородных участков линии длиной 100 км была практически одинакова;
  • в исключительных случаях для участков трассы с особо тяжелыми условиями, где обеспечение усредненных показателей готовности требует очень высоких экономических затрат, допускается снижение коэффициента готовности, если оно компенсируется повышенными значениями коэффициента готовности на остальных участках линии;
  • гарантированное обеспечение высоких показателей готовности может быть обеспечено взаимным резервированием линий связи разных типов;
  • показатели надежности элементов ЛКС: муфт, оконечных устройств, цистерн необслуживаемых регенерационных пунктов (НРП), мачтовых креплений оптических кабелей в грозозащитном тросе — должны быть не хуже показателей надежности оптических кабелей;
  • показатели готовности линии передачи следует задавать как общие — для канала связи, так и раздельные — для аппаратуры и для ЛКС;
  • в оптических кабелях следует предусматривать резервные оптические волокна.

При проектировании ЛКС и разработке мероприятий по повышению их надежности следует учитывать, что снижение плотности отказов увеличивает капитальные, а снижение времени восстановления — эксплуатационные расходы.

Требования к показателям надежности ЛКС должны определяться исходя из требований готовности основного цифрового канала (ОЦК) перспективной цифровой сети. Для ГЦК протяженностью 13900 км (без резервирования) на перспективной цифровой первичной сети показатели готовности по отказам должны соответствовать следующим значениям:

коэффициент готовности — не менее 0,98.

Учитывая высокую готовность современной аппаратуры ЦСП, целесообразно принять значение коэффициента готовности ЛКС -0,985, а оконечной аппаратуры — 0,995.

Заданный коэффициент готовности ЛКС можно обеспечить при разных соотношениях между значениями плотности отказов и временем восстановления. В районах с относительно легкими условиями эксплуатации время восстановления следует задавать от 4 до 5 часов. При этом плотность отказов должна быть не более 0,2381 …0,1905.

В районах с тяжелыми условиями эксплуатации, а также для ВОК, подвешенных на опорах высоковольтных ЛЭП, время восстановления следует задавать от 5 до 6 часов. При этом плотность отказов должна быть не более 0,1905.. .0,1587.

Другие автоматизированные системы

Необходимость в централизованном управлении различными установками возникает также и в других системах, не связанных с производством и энергетикой. Приведем два примера, в которых целесообразно использовать оптическое волокно.

Сеть POS-терминалов в магазинах, банках и других учреждениях. Использование оптоволокна для передачи информации между POS-терминалами и центральным компьютером гарантирует высокую скорость связи и сохранность данных по проведенным операциям

Особенно это важно на крупных площадях, где могут присутствовать источники сильных помех

Игровые развлекательные центры. Оптоволокно также может быть использовано для автоматизации игровых развлекательных систем, а именно для связи центрального компьютера с игровыми автоматами, внутренних соединений автомата и связи между игровыми автоматами для многопользовательской игры.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Работатека
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: